-
I plan to continue uploading the projects I have done in the future.
-
๐ฑ Iโm currently learning multi-modal, multi-camera, lidar.
-
๐ฏ Iโm looking to collaborate on everything about computer vision.
-
๐ฌ Ask me about everything about me.
-
๐ซ How to reach me [email protected] or [email protected].
-
๐ my github blog git blog.
-
๐ I have experience collaborating with companies here !!! About 2D/3D Object Detection, 3D Reconstruction(Bundle Adjustment, Pose Graph Optimization), On-board(memory & time optimization), Camera Calibration(using 1D/2D chessboard), AI ethics, AI module performance improvement in specific environment ...
Brief description of the projects involved ๐
- Goal: Develop a 3D reconstruction module using monocular images.
- Role: Lead Researcher (80% contribution) โ Designed and implemented keypoint matching (SIFT/SURF), computed epipolar geometry, estimated camera relationships, and applied PnP & bundle adjustment (BA). Led the development of the full 3D reconstruction pipeline.
- Achievement: Successfully built a 3D reconstruction module that processes monocular images to generate 3D structures.
2. Robust Monocular Camera 3D Object Detection in Various Camera Environments (Hyundai) ๐ฏ (Mar 2021 - Jun 2022)
- Goal: Improve the robustness of monocular camera-based 3D object detection, addressing significant performance degradation caused by varying camera environments.
- Role: Lead Researcher (70% contribution) โ Developed data augmentation techniques to enhance model generalization across different camera angles, identified the root causes of performance degradation, and implemented correction algorithms to mitigate these effects.
- Achievement: Diagnosed key factors affecting model accuracy and significantly improved performance:
- Accuracy increased from 20% to 80% for a 3-degree angle variation.
- Accuracy increased from 1% to 50% for a 5-degree angle variation.
- Research findings contributed to international patents and publications(CVPRw 2024).
3. Development of Car Location and Speed Estimation Module Using CCTV Footage (ETRI) ๐๐น (Aug 2022 - Dec 2022)
- Goal: Develop a module capable of estimating vehicle position and speed solely from CCTV video data.
- Role: Lead Researcher (80% contribution) โ Engineered road detection and image warping algorithms, developed vehicle speed estimation methods, and optimized overall system performance.
- Achievement: Achieved over 90% accuracy in vehicle speed estimation on the target dataset.
- Miltitary Scientific Surveillance System(์ก๊ตฐ๋ณธ๋ถ) - 23.03 ~ 23.09
- Performance Enhancement Officer (30% contribution)
- ๋ชฉํ : AI ๊ฒฝ๊ณ๊ฐ์์์คํ ๊ตฌ์ถ์ ํตํด ์คํ์ง/๋ฏธํ์ง ๊ฐ์ ๋ฐ ์ ํ์ง ํฅ์
- ์ญํ : TOD ์นด๋ฉ๋ผ ์ ๋ณด(์นด๋ฉ๋ผ๋ก๋ถํฐ ์ ๋ ๊ฑฐ๋ฆฌ ๊ฐ๋ฅ)๋ฅผ ํ์ฉํ์ฌ ์คํ์ง๋ฅผ ํ๊ธฐ์ ์ผ๋ก ์ค์์
- ์ฑ๊ณผ : ๊ธฐ์กด ๋๋น ์คํ์ง๋ฅผ 10% ์ค์์
- AI ๋ฌด๊ธฐ์ฒด๊ณ ์ํํ๊ฐ ๊ธฐ์ค ์ค๋ฆฝ(์ก๊ตฐ๋ณธ๋ถ, ๋ฏธ๊ตญ๋ฐฉ๋ถ) - 23.03 ~ 24.06
- AI ์ํํ๊ฐ ์ฐ๊ตฌ์ (30% contribution)
- Goal : Develop new testing and evaluation standards for AI weapon systems, which differ significantly from traditional weapon systems.
- Role : As an AI Test and Evaluation Researcher, collaborated with the U.S. Department of Defense, coordinated with the Ministry of National Defense, and conducted extensive research on AI weapon systems, including identifying requirements (Contribution 30%).
- Achievements : Established initial standards for the Military Performance Certification Center (including dataset construction, baseline model development, and formulation of various strategies).
- AI ์ํํ๊ฐ ๊ธฐ์ค ๋ชจ๋ธ ์ฐ๊ตฌ๊ฐ๋ฐ(์ก๊ตฐ๋ณธ๋ถ) - 23.10 ~ 24.06
- Lead Researcher (60% contribution)
- Goal : When introducing various AI weapon systems in the Army, create a military learning/test data set and build an AI model that serves as a standard.
- Role : Developed an Auto-Labeler for military datasets, performed data cleansing and construction, and developed a baseline model for performance verification (Contribution 60%).
- Achievements : Established initial standards for the Military Performance Certification Center(including dataset construction, baseline model development, and formulation of various strategies).
- ํ๋ก์ ํธ ์ด๋ฆ ์ฐพ๊ธฐ(ํด๋น์ธ ) - 24.06 ~ 24.12
- ํต์ฌ ๊ฐ๋ฐ์ (40% contribution)
- ๋ชฉํ :
- ์ญํ : Multi-Thread์ ์๋ฃ๊ตฌ์กฐ ๊ฐ์ ์ ํตํ ์ต์ ํ
- ์ฑ๊ณผ : ์ฑ๋ฅ ์ ํ ์์ด ๊ธฐ์กด ์๊ณ ๋ฆฌ์ฆ ๋๋น ์ต๋ 60% ์๋ ํฅ์
- ํ๋ก์ ํธ ์ด๋ฆ ์ฐพ๊ธฐ(ํ๋์กฐ์ ํด์) - 24.09 ~ 24.11
- ํต์ฌ ๊ฐ๋ฐ์ (40% contribution)
- ๋ชฉํ :
- ์ญํ : ์ํ๊ฒฉ์ chess board๋ฅผ ํตํ camera calibration ๋ชจ๋ ๊ฐ๋ฐ
- ์ฑ๊ณผ : ~(์์น ์ฐพ์๋๊ธฐ)์ ์ ํ๋๋ก ์ํ chess board ํ์ฉํ๋ camera calibration ๋ชจ๋๊ฐ๋ฐ
- ์์ฝ ๊ฒ์ถ ๋ฐ ์ธ์(ETRI) - 24.09 ~ 24.12 => ๋ฌธ์ ์ฐพ์๋ณด๊ธฐ
- Lead Researcher (80% contribution)
- ๋ชฉํ :
- ์ญํ : ์ถ๊ฐ์ ์ธ 2D ์์ฝ ๊ฒ์ถ ์๊ณ ๋ฆฌ์ฆ ํ์ต์์ด ์์ฝ์ ๊ฒ์ถํ๊ณ ์ด๋ ํ ์์ฝ์ธ์ง ์ธ์ํ๋ ์๊ณ ๋ฆฌ์ฆ ๊ฐ๋ฐ(Template matching, color ๊ณ ๋ ค, warping ๋ฑ)
- ์ฑ๊ณผ :
- ํ๋ก์ ํธ ์ด๋ฆ ์ฐพ๊ธฐ(Honda) - 24.10 ~ 24.12
- ๋ชฉํ :
- ์ญํ : (ํต์ฌ ๊ฐ๋ฐ์, 40% contribution)text -> 3D model, 3D model + text => ์์ ๋ 3D model
- ์ฑ๊ณผ :
- ์ฃผํ ์ฌ๊ณ vlm(subaru) - 24.11. 25.01
- ๋ชฉํ :
- ์ญํ : (ํต์ฌ ๊ฐ๋ฐ์, 40% contribution)
- ์ฑ๊ณผ : ์ํ์ค ์ด๋ฏธ์ง๋ฅผ ๋ฐ์์ ์ฃผํ๋์ค์ ์ํํ ์๊ฐ ์ฃผ์๋ฅผ ํ๋ vlm ๊ฐ๋ฐ
- ๊ตฌ๊ฐ์ ๊ฒ์ถ ์๊ณ ๋ฆฌ์ฆ ๊ฐ๋ฐ - 24.11 ~ 24.12
- ๋ชฉํ : ๊ธฐ์กด ๋ชจ๋ธ๋ณด๋ค ๋ฐ์ด๋ ๊ตฌ๊ฐ์ ๊ฒ์ถ ๋ฐ segmentation ํ๋ ์๊ณ ๋ฆฌ์ฆ ๊ฐ๋ฐ
- ์ญํ : (ํต์ฌ ๊ฐ๋ฐ์, 80% contribution)
- ์ฑ๊ณผ : ์ ์ / ์์ฑ๊ตฌ๊ฐ์ / ์์ฑ๊ตฌ๊ฐ์์ segmentation ํ๋ ์๊ณ ๋ฆฌ์ฆ ๊ฐ๋ฐ
- ๐ซ You can edit your github read me in https://rahuldkjain.github.io/gh-profile-readme-generator/