Skip to content

Commit

Permalink
Jirka_RA: Solution: Exercise 1.1.7
Browse files Browse the repository at this point in the history
  • Loading branch information
ceciliachan1979 committed Mar 9, 2024
1 parent 23a96d9 commit 02619b9
Showing 1 changed file with 60 additions and 0 deletions.
60 changes: 60 additions & 0 deletions Books/Jirka_RA/Chapter01/Ex1_1/ex07.cecilia.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
\subsubsection*{Exercise 1.1.7. (Cecilia)}

\begin{flushleft}

Let's define the nonstandard ordering of the set of natural numbers $\mathbb{N}$.
\begin{equation*}
n \prec m =
\begin{cases}
n < m & \text{if $ n \ne 1 $ and $ m \ne 1 $} \\
\text{true} & \text{if $ n \ne 1 $ and $ m = 1 $} \\
\text{false} & \text{if $ n = 1 $ }
\end{cases}
\end{equation*}

As usual, $ n \succ m $ if $ n \ne m $ and not $ n \prec m $.

\textbf{Trichotomy} Claim: For any $ a, b \in \mathbb{N} $, exactly one of the following holds:
\begin{enumerate}
\item{$ a \prec b $}
\item{$ a = b $}
\item{$ a \succ b $}
\end{enumerate}

Proof: In the case $ a \ne 1 $ and $ b \ne 1 $, trichotomy follows from the trichotomy of standard comparsion

Suppose $ a = 1 $, $ b \ne 1 $, then
\begin{enumerate}
\item{$ a \prec b $ is false, by definition}
\item{$ a = b $ is false.}
\item{$ a \succ b $ is true, by definition}
\end{enumerate}

Suppose $ a \ne 1 $, $ b = 1 $, then
\begin{enumerate}
\item{$ a \prec b $ is true, by definition}
\item{$ a = b $ is false.}
\item{$ a \succ b $ is false, by definition}
\end{enumerate}

Suppose $ a = 1 $, $ b = 1 $, then
\begin{enumerate}
\item{$ a \prec b $ is false, by definition}
\item{$ a = b $ is true.}
\item{$ a \succ b $ is false, by definition}
\end{enumerate}

So trichotomy holds for all cases.

\textbf{Transitivity} Claim: For any $ a, b, c \in \mathbb{N} $, if $ x \prec y $ and $ y \prec z $, then $ x \prec z $.

It is impossible for $ x = 1 $ or $ y = 1 $, suppose $ x \ne 1 $ and $ z = 1 $, we have $ x \prec z $ unconditionally.

Otherwise transitivity follows from the transitivity of standard comparison.

\textbf{Least upper bound example}
Consider the subset $ A = \{x \in \mathbb{N} | x > 1\} $, the subset is bounded above (under $ \prec $) by $ 1 $. We claim that the least upper bound is $ 1 $ and is therefore not belongs to the set $ A $.

Obviously $ 1 $ is an upper bound. For any number $ n \in \mathbb{N} $ such that $ n \prec 1 $. The number $ n + 1 \in A $, so it is not an upper bound. Therefore $ 1 $ is the least upper bound.

\end{flushleft}

0 comments on commit 02619b9

Please sign in to comment.