Skip to content

Commit

Permalink
BabyRudin: Solution: Ex07 in Ch03
Browse files Browse the repository at this point in the history
  • Loading branch information
ceciliachan1979 committed Mar 16, 2024
1 parent c62b17b commit 1d88c73
Showing 1 changed file with 14 additions and 0 deletions.
14 changes: 14 additions & 0 deletions Books/BabyRudin/Chapter03/ex07.cecilia.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
\subsection*{Exercise 07 (Cecilia)}

If $ \sqrt{a_n} > \frac{1}{n} $, then $ a_n > \frac{\sqrt{a_n}}{n} $, otherwise $ \frac{1}{n} \ge \sqrt{a_n} $, so $ \frac{1}{n^2} \ge \frac{\sqrt{a_n}}{n} $.

As a result $ \max\left(a_n, \frac{1}{n^2}\right) \ge \frac{\sqrt{a_n}}{n} $, and so we can use the comparison test as follow:

\begin{eqnarray*}
& & a_n + \frac{1}{n^2} \\
&\ge& \max\left(a_n, \frac{1}{n^2}\right) \\
&\ge& \frac{\sqrt{a_n}}{n} \\
& = & \left|\frac{\sqrt{a_n}}{n}\right|
\end{eqnarray*}

As the series $ \sum (a_n + \frac{1}{n^2}) $ converges, the series $ \sum \frac{\sqrt{a_n}}{n} $ also converges by the comparison test.

0 comments on commit 1d88c73

Please sign in to comment.