-
Notifications
You must be signed in to change notification settings - Fork 38
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* ThermoData branch Turboprop and turbofan exit condition calculation module added Co-authored-by: Francesco-Marcucci <[email protected]>
- Loading branch information
1 parent
b48fda8
commit f1ee8de
Showing
18 changed files
with
2,015 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
% % | ||
% SU2 configuration file % | ||
% Case description: VKI turbine % | ||
% Author: Francisco Palacios, Thomas D. Economon % | ||
% Institution: Stanford University % | ||
% Date: Feb 18th, 2013 % | ||
% File Version 8.0.0 "Harrier" % | ||
% % | ||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | ||
|
||
% ------------- DIRECT, ADJOINT, AND LINEARIZED PROBLEM DEFINITION ------------% | ||
% | ||
SOLVER= RANS | ||
% | ||
KIND_TURB_MODEL= SA | ||
% | ||
MATH_PROBLEM= DIRECT | ||
% | ||
RESTART_SOL= NO | ||
% | ||
SYSTEM_MEASUREMENTS= SI | ||
|
||
% -------------------- COMPRESSIBLE FREE-STREAM DEFINITION --------------------% | ||
% | ||
MACH_NUMBER= 0.3 | ||
% | ||
AOA= 0.0 | ||
% | ||
FREESTREAM_PRESSURE= 1.013E5 | ||
% | ||
FREESTREAM_OPTION= DENSITY_FS | ||
% | ||
FREESTREAM_DENSITY = 1.255 | ||
% | ||
FREESTREAM_TEMPERATURE =288.15 | ||
% | ||
REYNOLDS_NUMBER= 4E6 | ||
% | ||
REYNOLDS_LENGTH= 1.0 | ||
|
||
% ---------------------- REFERENCE VALUE DEFINITION ---------------------------% | ||
% | ||
REF_ORIGIN_MOMENT_X = 0.00 | ||
% | ||
REF_ORIGIN_MOMENT_Y = 0.00 | ||
% | ||
REF_ORIGIN_MOMENT_Z = 0.00 | ||
% | ||
REF_LENGTH= 45.0 | ||
% | ||
REF_AREA= 1 | ||
% Compressible flow non-dimensionalization (DIMENSIONAL, FREESTREAM_PRESS_EQ_ONE, | ||
% FREESTREAM_VEL_EQ_MACH, FREESTREAM_VEL_EQ_ONE) | ||
REF_DIMENSIONALIZATION= FREESTREAM_PRESS_EQ_ONE | ||
% | ||
% ----------------------- BOUNDARY CONDITION DEFINITION -----------------------% | ||
% | ||
MARKER_HEATFLUX = (S4CreatedbyGmsh, 0.0) | ||
% | ||
MARKER_FAR= (S3Farfield) | ||
% | ||
%MARKER_SYM =() | ||
% | ||
% ------------------------ SURFACES IDENTIFICATION ----------------------------% | ||
% | ||
% Marker(s) of the surface to be plotted or designed | ||
MARKER_PLOTTING= (S4CreatedbyGmsh) | ||
% | ||
% Marker(s) of the surface where the functional (Cd, Cl, etc.) will be evaluated | ||
MARKER_MONITORING= (S4CreatedbyGmsh) | ||
|
||
% ------------- COMMON PARAMETERS DEFINING THE NUMERICAL METHOD ---------------% | ||
% | ||
NUM_METHOD_GRAD= GREEN_GAUSS | ||
% | ||
CFL_NUMBER= 1 | ||
% | ||
CFL_ADAPT= NO | ||
% | ||
CFL_ADAPT_PARAM= ( 0.5, 1, 1.0, 100.0 ) | ||
% | ||
ITER = 5000 | ||
|
||
% Objective function in gradient evaluation (DRAG, LIFT, SIDEFORCE, MOMENT_X, | ||
% MOMENT_Y, MOMENT_Z, EFFICIENCY, BUFFET, | ||
% EQUIVALENT_AREA, NEARFIELD_PRESSURE, | ||
% FORCE_X, FORCE_Y, FORCE_Z, THRUST, | ||
% TORQUE, TOTAL_HEATFLUX, | ||
% MAXIMUM_HEATFLUX, INVERSE_DESIGN_PRESSURE, | ||
% INVERSE_DESIGN_HEATFLUX, SURFACE_TOTAL_PRESSURE, | ||
% SURFACE_MASSFLOW, SURFACE_STATIC_PRESSURE, SURFACE_MACH) | ||
% For a weighted sum of objectives: separate by commas, add OBJECTIVE_WEIGHT and MARKER_MONITORING in matching order. | ||
OBJECTIVE_FUNCTION= DRAG | ||
|
||
% ------------------------ LINEAR SOLVER DEFINITION ---------------------------% | ||
% Linear solver or smoother for implicit formulations: | ||
% BCGSTAB, FGMRES, RESTARTED_FGMRES, CONJUGATE_GRADIENT (self-adjoint problems only), SMOOTHER. | ||
LINEAR_SOLVER= FGMRES | ||
% | ||
% Preconditioner of the Krylov linear solver or type of smoother (ILU, LU_SGS, LINELET, JACOBI) | ||
LINEAR_SOLVER_PREC= ILU | ||
% | ||
% Minimum error of the linear solver for implicit formulations | ||
LINEAR_SOLVER_ERROR= 1E-12 | ||
% | ||
% Max number of iterations of the linear solver for the implicit formulation | ||
LINEAR_SOLVER_ITER= 3 | ||
% | ||
% Number of elements to apply the criteria | ||
CONV_CAUCHY_ELEMS= 1000 | ||
% | ||
% Epsilon to control the series convergence | ||
CONV_CAUCHY_EPS= 1E-10 | ||
% -------------------- FLOW NUMERICAL METHOD DEFINITION -----------------------% | ||
% Convective numerical method (JST, LAX-FRIEDRICH, CUSP, ROE, AUSM, AUSMPLUSUP, | ||
% AUSMPLUSUP2, HLLC, TURKEL_PREC, MSW, FDS, SLAU, SLAU2) | ||
CONV_NUM_METHOD_FLOW= JST | ||
% | ||
% Time discretization (RUNGE-KUTTA_EXPLICIT, EULER_IMPLICIT, EULER_EXPLICIT) | ||
TIME_DISCRE_FLOW= EULER_IMPLICIT | ||
% | ||
% -------------------- TURBULENT NUMERICAL METHOD DEFINITION ------------------% | ||
% Convective numerical method (SCALAR_UPWIND) | ||
CONV_NUM_METHOD_TURB= SCALAR_UPWIND | ||
% | ||
% Monotonic Upwind Scheme for Conservation Laws (TVD) in the turbulence equations. | ||
% Required for 2nd order upwind schemes (NO, YES) | ||
MUSCL_TURB= NO | ||
% | ||
% Slope limiter (NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG, | ||
% BARTH_JESPERSEN, VAN_ALBADA_EDGE) | ||
SLOPE_LIMITER_TURB= VENKATAKRISHNAN | ||
% | ||
% Time discretization (EULER_IMPLICIT) | ||
TIME_DISCRE_TURB= EULER_IMPLICIT | ||
% -------------------------- MULTIGRID PARAMETERS -----------------------------% | ||
% | ||
% Multi-Grid Levels (0 = no multi-grid) | ||
MGLEVEL = 3 | ||
% | ||
% Multi-grid cycle (V_CYCLE, W_CYCLE, FULLMG_CYCLE) | ||
MGCYCLE = W_CYCLE | ||
% | ||
% Multi-Grid PreSmoothing Level | ||
MG_PRE_SMOOTH = ( 1.0, 2.0, 3.0, 3.0 ) | ||
% | ||
% Multi-Grid PostSmoothing Level | ||
MG_POST_SMOOTH = ( 0.0, 0.0, 0.0, 0.0 ) | ||
% | ||
% Jacobi implicit smoothing of the correction | ||
MG_CORRECTION_SMOOTH = ( 0.0, 0.0, 0.0, 0.0 ) | ||
% | ||
% Damping factor for the residual restriction | ||
MG_DAMP_RESTRICTION = 0.9 | ||
% | ||
% Damping factor for the correction prolongation | ||
MG_DAMP_PROLONGATION = 0.9 | ||
% --------------------------- CONVERGENCE PARAMETERS --------------------------% | ||
% | ||
% Min value of the residual (log10 of the residual) | ||
CONV_RESIDUAL_MINVAL= -12 | ||
% | ||
% Start convergence criteria at iteration number | ||
CONV_STARTITER= 10 | ||
% | ||
|
||
% ------------------------- INPUT/OUTPUT INFORMATION --------------------------% | ||
% | ||
MESH_FILENAME= labair_penta.su2 | ||
% | ||
MESH_FORMAT= SU2 | ||
% | ||
MESH_OUT_FILENAME= mesh_out.su2 | ||
% | ||
SOLUTION_FILENAME= solution_flow.dat | ||
% | ||
HISTORY_OUTPUT = (INNER_ITER, RMS_RES, AERO_COEFF) | ||
% | ||
TABULAR_FORMAT= CSV | ||
% | ||
CONV_FILENAME= history | ||
% | ||
RESTART_FILENAME= restart_flow.dat | ||
% | ||
RESTART_ADJ_FILENAME= restart_adj.dat | ||
% | ||
VOLUME_FILENAME= flow | ||
% | ||
SURFACE_FILENAME= surface_flow | ||
% | ||
OUTPUT_WRT_FREQ= 100 | ||
% | ||
BREAKDOWN_FILENAME = forces_breakdown_def.dat | ||
% | ||
WRT_FORCES_BREAKDOWN = YES | ||
% | ||
SCREEN_OUTPUT= (INNER_ITER, RMS_DENSITY, RMS_ENERGY, LIFT, DRAG) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.