Skip to content

code implementation of GNNs in few-shot learning: GCN, GAT, GraphSAGE to the node classification task.

License

Notifications You must be signed in to change notification settings

colflip/gnns_fewshot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

gnns_fewshot [address]

Code implementation of GNNs in few-shot learning: GCN, GAT, GraphSAGE to the node classification task of some datasets.

dependencies

  • Python ≥ 3.10
  • PyTorch ≥ 11.3
  • pyg ≥ 1.12.0

results

novel class is num_class*2/5

model/shot/dataset Cora CiteSeer Photo cs Computers CoraFull
GCN 1 72.43±1.97[2] 64.9±1.75[2] 78.69±2.49[3] 83.51±0.88[6] 74.35±1.99[4] 34.56±0.22[28]
3 85.6±1.13[2] 75.67±1.66[2] 91.12±0.54[3] 91.92±0.2[6] 87.88±0.74[4] 54.92±0.17[28]
5 89.28±0.8[2] 79.29±1.39[2] 93.32±0.32[3] 93.75±0.14[6] 90.64±0.46[4] 62.46±0.15[28]
GAT 1 69.37±2.34[2] 61.08±1.59[2] 40.52±3.98[3] 73.39±1.53[6] 30.95±3.1[4] 34.64±0.26[28]
3 84.07±1.31[2] 72.12±1.87[2] 61.33±8.15[3] 89.95±0.28[6] 56.33±7.8[4] 54.55±0.17[28]
5 88.79±0.9[2] 77.12±1.57[2] 74.29±7.08[3] 92.17±0.17[6] 69.63±7.27[4] 62.05±0.15[28]
GraphSAGE 1 71.74±1.75[2] 64.41±1.78[2] 48.61±1.77[3] 72.7±2.07[6] 36.4±0.91[4] 23.67±0.26[28]
3 83.32±1.15[2] 72.98±1.59[2] 69.95±2.03[3] 87.24±0.64[6] 62.1±1.7[4] 47.93±0.18[28]
5 87.48±0.92[2] 78.41±1.25[2] 82.17±1.13[3] 90.6±0.31[6] 75.69±1.31[4] 57.68±0.16[28]

novel class is 2

model/shot/dataset Cora CiteSeer Photo cs Computers CoraFull PubMed
GCN 1 72.12±1.96 64.82±1.76 83.82±2.76 94.6±0.86 83.53±3.21
3 85.62±1.09 75.43±1.73 93.87±0.58 97.86±0.17 93.9±0.94
5 89.18±0.77 79.28±1.41 95.38±0.31 98.08±0.15 95.56±0.43
GAT 1 68.66±2.31 61.27±1.58 56.78±4.56 86.42±2.27 51.03±3.78
3 84.22±1.3 71.94±1.84 68.62±7.07 95.57±0.47 65.88±7.03
5 88.92±0.92 77.54±1.53 76.12±6.48 96.82±0.27 75.34±7.65
GraphSAGE 1 71.38±1.78 64.55±1.64 60.6±1.82 89.86±1.79 57.57±1.32
3 83.63±1.11 73.38±1.57 76.25±2.6 96.03±0.5 69.92±2.49
5 87.7±0.84 77.54±1.27 84.35±1.58 96.3±0.33 80.01±2.3

license

It is under the MIT license. See the LICENSE file for details.


“一切恩爱会、无常难得久、生世多畏惧、命危于晨露,由爱故生忧,由爱故生怖,若离于爱者,无忧亦无怖。

About

code implementation of GNNs in few-shot learning: GCN, GAT, GraphSAGE to the node classification task.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages