gnns_fewshot [address]
Code implementation of GNNs in few-shot learning: GCN, GAT, GraphSAGE to the node classification task of some datasets.
- Python ≥ 3.10
- PyTorch ≥ 11.3
- pyg ≥ 1.12.0
model/shot/dataset | Cora | CiteSeer | Photo | cs | Computers | CoraFull | |
---|---|---|---|---|---|---|---|
GCN | 1 | 72.43±1.97[2] | 64.9±1.75[2] | 78.69±2.49[3] | 83.51±0.88[6] | 74.35±1.99[4] | 34.56±0.22[28] |
3 | 85.6±1.13[2] | 75.67±1.66[2] | 91.12±0.54[3] | 91.92±0.2[6] | 87.88±0.74[4] | 54.92±0.17[28] | |
5 | 89.28±0.8[2] | 79.29±1.39[2] | 93.32±0.32[3] | 93.75±0.14[6] | 90.64±0.46[4] | 62.46±0.15[28] | |
GAT | 1 | 69.37±2.34[2] | 61.08±1.59[2] | 40.52±3.98[3] | 73.39±1.53[6] | 30.95±3.1[4] | 34.64±0.26[28] |
3 | 84.07±1.31[2] | 72.12±1.87[2] | 61.33±8.15[3] | 89.95±0.28[6] | 56.33±7.8[4] | 54.55±0.17[28] | |
5 | 88.79±0.9[2] | 77.12±1.57[2] | 74.29±7.08[3] | 92.17±0.17[6] | 69.63±7.27[4] | 62.05±0.15[28] | |
GraphSAGE | 1 | 71.74±1.75[2] | 64.41±1.78[2] | 48.61±1.77[3] | 72.7±2.07[6] | 36.4±0.91[4] | 23.67±0.26[28] |
3 | 83.32±1.15[2] | 72.98±1.59[2] | 69.95±2.03[3] | 87.24±0.64[6] | 62.1±1.7[4] | 47.93±0.18[28] | |
5 | 87.48±0.92[2] | 78.41±1.25[2] | 82.17±1.13[3] | 90.6±0.31[6] | 75.69±1.31[4] | 57.68±0.16[28] |
model/shot/dataset | Cora | CiteSeer | Photo | cs | Computers | CoraFull | PubMed | |
---|---|---|---|---|---|---|---|---|
GCN | 1 | 72.12±1.96 | 64.82±1.76 | 83.82±2.76 | 94.6±0.86 | 83.53±3.21 | ||
3 | 85.62±1.09 | 75.43±1.73 | 93.87±0.58 | 97.86±0.17 | 93.9±0.94 | |||
5 | 89.18±0.77 | 79.28±1.41 | 95.38±0.31 | 98.08±0.15 | 95.56±0.43 | |||
GAT | 1 | 68.66±2.31 | 61.27±1.58 | 56.78±4.56 | 86.42±2.27 | 51.03±3.78 | ||
3 | 84.22±1.3 | 71.94±1.84 | 68.62±7.07 | 95.57±0.47 | 65.88±7.03 | |||
5 | 88.92±0.92 | 77.54±1.53 | 76.12±6.48 | 96.82±0.27 | 75.34±7.65 | |||
GraphSAGE | 1 | 71.38±1.78 | 64.55±1.64 | 60.6±1.82 | 89.86±1.79 | 57.57±1.32 | ||
3 | 83.63±1.11 | 73.38±1.57 | 76.25±2.6 | 96.03±0.5 | 69.92±2.49 | |||
5 | 87.7±0.84 | 77.54±1.27 | 84.35±1.58 | 96.3±0.33 | 80.01±2.3 |
It is under the MIT license. See the LICENSE file for details.
“一切恩爱会、无常难得久、生世多畏惧、命危于晨露,由爱故生忧,由爱故生怖,若离于爱者,无忧亦无怖。”