-
Python 3.6
-
Pytorch 1.4
-
torchvision 0.5.0
-
CDD (Change Detection Dataset)
-
Crop LEVIR and BCDD datasets into 256x256 patches. The pre-processed BCDD dataset can be obtained from BCDD_256x256.
-
Prepare datasets into the following structure and set their path in
metadata.json
├─Train ├─A ...jpg/png ├─B ...jpg/png ├─label ...jpg/png └─list ...txt ├─Val ├─A ├─B ├─label └─list ├─Test ├─A ├─B ├─label └─list
python train_val.py
python eval.py
python visualization.py
[1] X. Zhang,Shuli Cheng*, L. Wang and H. Li, Asymmetric Cross-attention Hierarchical Network Based on CNN and Transformer for Bitemporal Remote Sensing Images Change Detection,IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-16 (https://github.com/cslxju/ChangeDetection_ACAHNet_TGRS2023)
[2] X. Zhang, L. Wang and S. Cheng, "A Multiscale Cascaded Cross-Attention Hierarchical Network for Change Detection on Bitemporal Remote Sensing Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-16, 2024