Skip to content

Highly cited paper---"Asymmetric Cross-Attention Hierarchical Network Based on CNN and Transformer for Bitemporal Remote Sensing Images Change Detection[J]" in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15, 2023

Notifications You must be signed in to change notification settings

cslxju/ChangeDetection_ACAHNet_TGRS2023

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 

Repository files navigation

Requirements

  • Python 3.6

  • Pytorch 1.4

  • torchvision 0.5.0

Dataset

  • CDD (Change Detection Dataset)

  • LEVIR,

  • SYSU

  • Crop LEVIR and BCDD datasets into 256x256 patches. The pre-processed BCDD dataset can be obtained from BCDD_256x256.

  • Prepare datasets into the following structure and set their path in metadata.json

    ├─Train
        ├─A        ...jpg/png
        ├─B        ...jpg/png
        ├─label    ...jpg/png
        └─list     ...txt
    ├─Val
        ├─A
        ├─B
        ├─label
        └─list
    ├─Test
        ├─A
        ├─B
        ├─label
        └─list
    

Train from scratch

python train_val.py

Evaluate model performance

python eval.py

Visualization

python visualization.py

######################################## Using the code should cite the following paper

[1] X. Zhang,Shuli Cheng*, L. Wang and H. Li, Asymmetric Cross-attention Hierarchical Network Based on CNN and Transformer for Bitemporal Remote Sensing Images Change Detection,IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-16 (https://github.com/cslxju/ChangeDetection_ACAHNet_TGRS2023)

[2] X. Zhang, L. Wang and S. Cheng, "A Multiscale Cascaded Cross-Attention Hierarchical Network for Change Detection on Bitemporal Remote Sensing Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-16, 2024

About

Highly cited paper---"Asymmetric Cross-Attention Hierarchical Network Based on CNN and Transformer for Bitemporal Remote Sensing Images Change Detection[J]" in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-15, 2023

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published