Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(ingest/great_expectations): support in-memory (Pandas) data assets #9811

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
from great_expectations.checkpoint.actions import ValidationAction
from great_expectations.core.batch import Batch
from great_expectations.core.batch_spec import (
RuntimeDataBatchSpec,
RuntimeQueryBatchSpec,
SqlAlchemyDatasourceBatchSpec,
)
Expand All @@ -24,6 +25,7 @@
ExpectationSuiteIdentifier,
ValidationResultIdentifier,
)
from great_expectations.execution_engine import PandasExecutionEngine
from great_expectations.execution_engine.sqlalchemy_execution_engine import (
SqlAlchemyExecutionEngine,
)
Expand Down Expand Up @@ -566,10 +568,12 @@ def get_dataset_partitions(self, batch_identifier, data_asset):

logger.debug("Finding datasets being validated")

# for now, we support only v3-api and sqlalchemy execution engine
if isinstance(data_asset, Validator) and isinstance(
data_asset.execution_engine, SqlAlchemyExecutionEngine
):
# for now, we support only v3-api and sqlalchemy execution engine and Pandas engine
is_sql_alchemy = isinstance(data_asset, Validator) and (
isinstance(data_asset.execution_engine, SqlAlchemyExecutionEngine)
)
is_pandas = isinstance(data_asset.execution_engine, PandasExecutionEngine)
if is_sql_alchemy or is_pandas:
ge_batch_spec = data_asset.active_batch_spec
partitionSpec = None
batchSpecProperties = {
Expand All @@ -581,10 +585,14 @@ def get_dataset_partitions(self, batch_identifier, data_asset):
),
}
sqlalchemy_uri = None
if isinstance(data_asset.execution_engine.engine, Engine):
if is_sql_alchemy and isinstance(
data_asset.execution_engine.engine, Engine
):
sqlalchemy_uri = data_asset.execution_engine.engine.url
# For snowflake sqlalchemy_execution_engine.engine is actually instance of Connection
elif isinstance(data_asset.execution_engine.engine, Connection):
elif is_sql_alchemy and isinstance(
data_asset.execution_engine.engine, Connection
):
sqlalchemy_uri = data_asset.execution_engine.engine.engine.url

if isinstance(ge_batch_spec, SqlAlchemyDatasourceBatchSpec):
Expand Down Expand Up @@ -680,6 +688,30 @@ def get_dataset_partitions(self, batch_identifier, data_asset):
"batchSpec": batchSpec,
}
)
elif isinstance(ge_batch_spec, RuntimeDataBatchSpec):
data_platform = self.get_platform_instance(
data_asset.active_batch_definition.datasource_name
)
dataset_urn = builder.make_dataset_urn_with_platform_instance(
platform=data_platform
if self.platform_alias is None
else self.platform_alias,
name=data_asset.active_batch_definition.datasource_name,
platform_instance="",
env=self.env,
)
batchSpec = BatchSpec(
nativeBatchId=batch_identifier,
query="",
customProperties=batchSpecProperties,
)
dataset_partitions.append(
{
"dataset_urn": dataset_urn,
"partitionSpec": partitionSpec,
"batchSpec": batchSpec,
}
)
else:
warn(
"DataHubValidationAction does not recognize this GE batch spec type- {batch_spec_type}.".format(
Expand Down
163 changes: 158 additions & 5 deletions metadata-ingestion/tests/unit/test_great_expectations_action.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,13 @@
from datetime import datetime, timezone
from unittest import mock

import pandas as pd
import pytest
from great_expectations.core.batch import Batch, BatchDefinition, BatchRequest
from great_expectations.core.batch_spec import SqlAlchemyDatasourceBatchSpec
from great_expectations.core.batch_spec import (
RuntimeDataBatchSpec,
SqlAlchemyDatasourceBatchSpec,
)
from great_expectations.core.expectation_validation_result import (
ExpectationSuiteValidationResult,
)
Expand All @@ -21,6 +25,9 @@
from great_expectations.execution_engine.pandas_execution_engine import (
PandasExecutionEngine,
)
from great_expectations.execution_engine.sparkdf_execution_engine import (
SparkDFExecutionEngine,
)
from great_expectations.execution_engine.sqlalchemy_execution_engine import (
SqlAlchemyExecutionEngine,
)
Expand Down Expand Up @@ -87,12 +94,80 @@ def ge_validator_sqlalchemy() -> Validator:
return validator


@pytest.fixture(scope="function")
def ge_validator_spark() -> Validator:
validator = Validator(execution_engine=SparkDFExecutionEngine())
return validator


@pytest.fixture(scope="function")
def ge_validator_pandas() -> Validator:
validator = Validator(execution_engine=PandasExecutionEngine())
validator = Validator(
execution_engine=PandasExecutionEngine(),
batches=[
Batch(
data=pd.DataFrame({"foo": [10, 20], "bar": [100, 200]}),
batch_request=BatchRequest(
datasource_name="my_df_datasource",
data_connector_name="pandas_df",
data_asset_name="foobar",
),
batch_definition=BatchDefinition(
datasource_name="my_df_datasource",
data_connector_name="pandas_df",
data_asset_name="foobar",
batch_identifiers=IDDict(),
),
batch_spec=RuntimeDataBatchSpec(
{
"data_asset_name": "foobar",
"batch_identifiers": {},
"batch_data": {},
"type": "pandas_dataframe",
}
),
)
],
)
return validator


@pytest.fixture(scope="function")
def ge_validation_result_suite_pandas() -> ExpectationSuiteValidationResult:
validation_result_suite = ExpectationSuiteValidationResult(
results=[
{
"success": True,
"result": {},
"expectation_config": {
"expectation_type": "expect_column_values_to_not_be_null",
"kwargs": {
"column": "column",
"batch_id": "010ef8c1cd417910b971f4468f024ec6",
},
"meta": {},
},
}
],
success=True,
statistics={
"evaluated_expectations": 1,
"successful_expectations": 1,
"unsuccessful_expectations": 0,
"success_percent": 100,
},
meta={
"great_expectations_version": "v0.13.40",
"expectation_suite_name": "asset.default",
"run_id": {
"run_name": "test_200",
},
"validation_time": "20211228T130000.000000Z",
},
)
return validation_result_suite


@pytest.fixture(scope="function")
def ge_validation_result_suite() -> ExpectationSuiteValidationResult:
validation_result_suite = ExpectationSuiteValidationResult(
Expand Down Expand Up @@ -144,8 +219,22 @@ def ge_validation_result_suite_id() -> ValidationResultIdentifier:
return validation_result_suite_id


@pytest.fixture(scope="function")
def ge_validation_result_suite_id_pandas() -> ValidationResultIdentifier:
validation_result_suite_id = ValidationResultIdentifier(
expectation_suite_identifier=ExpectationSuiteIdentifier("asset.default"),
run_id=RunIdentifier(
run_name="test_200",
run_time=datetime.fromtimestamp(1640701702, tz=timezone.utc),
),
batch_identifier="010ef8c1cd417910b971f4468f024ec6",
)

return validation_result_suite_id


@mock.patch("datahub.emitter.rest_emitter.DatahubRestEmitter.emit_mcp", autospec=True)
def test_DataHubValidationAction_basic(
def test_DataHubValidationAction_sqlalchemy(
mock_emitter: mock.MagicMock,
ge_data_context: DataContext,
ge_validator_sqlalchemy: Validator,
Expand Down Expand Up @@ -248,6 +337,70 @@ def test_DataHubValidationAction_basic(
)


@mock.patch("datahub.emitter.rest_emitter.DatahubRestEmitter.emit_mcp", autospec=True)
def test_DataHubValidationAction_pandas(
mock_emitter: mock.MagicMock,
ge_data_context: DataContext,
ge_validator_pandas: Validator,
ge_validation_result_suite_pandas: ExpectationSuiteValidationResult,
ge_validation_result_suite_id_pandas: ValidationResultIdentifier,
) -> None:
server_url = "http://localhost:9999"

datahub_action = DataHubValidationAction(
data_context=ge_data_context,
server_url=server_url,
platform_instance_map={"my_df_datasource": "custom_platefrom"},
)

assert datahub_action.run(
validation_result_suite_identifier=ge_validation_result_suite_id_pandas,
validation_result_suite=ge_validation_result_suite_pandas,
data_asset=ge_validator_pandas,
) == {"datahub_notification_result": "DataHub notification succeeded"}

mock_emitter.assert_has_calls(
[
mock.call(
mock.ANY,
MetadataChangeProposalWrapper(
entityType="assertion",
changeType="UPSERT",
entityUrn="urn:li:assertion:7e04bcc3b85897d6d3fef6c998db6b05",
aspectName="assertionInfo",
aspect=AssertionInfoClass(
customProperties={"expectation_suite_name": "asset.default"},
type="DATASET",
datasetAssertion=DatasetAssertionInfoClass(
dataset="urn:li:dataset:(urn:li:dataPlatform:custom_platefrom,my_df_datasource,PROD)",
scope=DatasetAssertionScopeClass.DATASET_COLUMN,
operator="NOT_NULL",
fields=[
"urn:li:schemaField:(urn:li:dataset:(urn:li:dataPlatform:custom_platefrom,my_df_datasource,PROD),column)"
],
aggregation="IDENTITY",
nativeType="expect_column_values_to_not_be_null",
nativeParameters={"column": "column"},
),
),
),
),
mock.call(
mock.ANY,
MetadataChangeProposalWrapper(
entityType="assertion",
changeType="UPSERT",
entityUrn="urn:li:assertion:7e04bcc3b85897d6d3fef6c998db6b05",
aspectName="dataPlatformInstance",
bouaouda-achraf marked this conversation as resolved.
Show resolved Hide resolved
aspect=DataPlatformInstanceClass(
platform="urn:li:dataPlatform:great-expectations"
),
),
),
]
)


def test_DataHubValidationAction_graceful_failure(
ge_data_context: DataContext,
ge_validator_sqlalchemy: Validator,
Expand All @@ -269,7 +422,7 @@ def test_DataHubValidationAction_graceful_failure(

def test_DataHubValidationAction_not_supported(
ge_data_context: DataContext,
ge_validator_pandas: Validator,
ge_validator_spark: Validator,
ge_validation_result_suite: ExpectationSuiteValidationResult,
ge_validation_result_suite_id: ValidationResultIdentifier,
) -> None:
Expand All @@ -282,5 +435,5 @@ def test_DataHubValidationAction_not_supported(
assert datahub_action.run(
validation_result_suite_identifier=ge_validation_result_suite_id,
validation_result_suite=ge_validation_result_suite,
data_asset=ge_validator_pandas,
data_asset=ge_validator_spark,
) == {"datahub_notification_result": "none required"}
Loading