Skip to content

Latest commit

 

History

History
76 lines (61 loc) · 2.7 KB

README.md

File metadata and controls

76 lines (61 loc) · 2.7 KB

Tensorflow Keras (Scala)

This repository contains a Scala wrapper for Tensorflow Keras Java; an implementation of the high-level Keras API for training deep learning models. Using the scala wrapper allows for a more concise representation of Keras model training, with syntax very close to that of the Python API.

Python

import tensorflow as tf

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu', kernel_initializer="random_normal", bias_initializer="zeros"),
  tf.keras.layers.Dense(10, activation='softmax', kernel_initializer="random_normal", bias_initializer="zeros")
])

model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

(X_train, y_train), (X_val, y_val) = tf.keras.datasets.load_mnist()
model.fit(X_train, y_train, val_data=(X_val, y_val), epochs=10, batch_size=100)

Scala:

package org.tensorflow.keras.scala.examples

import java.lang.{Float => JFloat}

import org.tensorflow.Graph
import org.tensorflow.data.GraphLoader
import org.tensorflow.keras.activations.Activations.{relu, softmax}
import org.tensorflow.keras.datasets.FashionMNIST
import org.tensorflow.keras.initializers.Initializers.{randomNormal, zeros}
import org.tensorflow.keras.losses.Losses.sparseCategoricalCrossentropy
import org.tensorflow.keras.metrics.Metrics.accuracy
import org.tensorflow.keras.models.Sequential
import org.tensorflow.keras.optimizers.Optimizers.sgd
import org.tensorflow.keras.scala.Layers.{dense, flatten, input}
import org.tensorflow.keras.scala.Model
import org.tensorflow.op.Ops
import org.tensorflow.utils.Pair

import scala.util.Using

object FashionMNISTKeras {

  val model: Model[JFloat] = Sequential.of[JFloat](
    classOf[JFloat],
    input(28, 28),
    flatten(),
    dense(128, activation = relu, kernelInitializer = randomNormal, biasInitializer = zeros),
    dense(10, activation = softmax, kernelInitializer = randomNormal, biasInitializer = zeros)
  )

  def train(model: Model[JFloat]): Model[JFloat] = {
      Using.resource(new Graph()) { graph => {
        implicit val tf: Ops = Ops.create(graph)
        model.compile(optimizer = sgd, loss = sparseCategoricalCrossentropy, metrics = List(accuracy))
  
        val (trainLoader, testLoader): (GraphLoader[JFloat], GraphLoader[JFloat]) = FashionMNIST.graphLoaders2D()
        // GraphLoader objects contain AutoCloseable `Tensors`.
        Using.resources(trainLoader, testLoader) { (train, test) => {
          model.fit(train, test, epochs = 10, batchSize = 100)
        }}
      }}
  
      model
  }

  def main(args: Array[String]): Unit = {
    train(model.self)
  }
}