This repository contains a Scala wrapper for Tensorflow Keras Java; an implementation of the high-level Keras API for training deep learning models. Using the scala wrapper allows for a more concise representation of Keras model training, with syntax very close to that of the Python API.
Python
import tensorflow as tf
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu', kernel_initializer="random_normal", bias_initializer="zeros"),
tf.keras.layers.Dense(10, activation='softmax', kernel_initializer="random_normal", bias_initializer="zeros")
])
model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
(X_train, y_train), (X_val, y_val) = tf.keras.datasets.load_mnist()
model.fit(X_train, y_train, val_data=(X_val, y_val), epochs=10, batch_size=100)
Scala:
package org.tensorflow.keras.scala.examples
import java.lang.{Float => JFloat}
import org.tensorflow.Graph
import org.tensorflow.data.GraphLoader
import org.tensorflow.keras.activations.Activations.{relu, softmax}
import org.tensorflow.keras.datasets.FashionMNIST
import org.tensorflow.keras.initializers.Initializers.{randomNormal, zeros}
import org.tensorflow.keras.losses.Losses.sparseCategoricalCrossentropy
import org.tensorflow.keras.metrics.Metrics.accuracy
import org.tensorflow.keras.models.Sequential
import org.tensorflow.keras.optimizers.Optimizers.sgd
import org.tensorflow.keras.scala.Layers.{dense, flatten, input}
import org.tensorflow.keras.scala.Model
import org.tensorflow.op.Ops
import org.tensorflow.utils.Pair
import scala.util.Using
object FashionMNISTKeras {
val model: Model[JFloat] = Sequential.of[JFloat](
classOf[JFloat],
input(28, 28),
flatten(),
dense(128, activation = relu, kernelInitializer = randomNormal, biasInitializer = zeros),
dense(10, activation = softmax, kernelInitializer = randomNormal, biasInitializer = zeros)
)
def train(model: Model[JFloat]): Model[JFloat] = {
Using.resource(new Graph()) { graph => {
implicit val tf: Ops = Ops.create(graph)
model.compile(optimizer = sgd, loss = sparseCategoricalCrossentropy, metrics = List(accuracy))
val (trainLoader, testLoader): (GraphLoader[JFloat], GraphLoader[JFloat]) = FashionMNIST.graphLoaders2D()
// GraphLoader objects contain AutoCloseable `Tensors`.
Using.resources(trainLoader, testLoader) { (train, test) => {
model.fit(train, test, epochs = 10, batchSize = 100)
}}
}}
model
}
def main(args: Array[String]): Unit = {
train(model.self)
}
}