Skip to content

Commit

Permalink
docs: add rag example (vercel#2456)
Browse files Browse the repository at this point in the history
  • Loading branch information
nicoalbanese authored Jul 29, 2024
1 parent b8e4e9f commit 2043351
Showing 1 changed file with 70 additions and 0 deletions.
70 changes: 70 additions & 0 deletions content/examples/03-node/01-generating-text/06-rag.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
---
title: RAG
description: Learn how to build a Retrieval Augmented Generation application with Node.js.
---

# RAG

Retrieval Augmented Generation (RAG) is a technique that enhances the capabilities of language models by providing them with relevant information from external sources during the generation process.
This approach allows the model to access and incorporate up-to-date or specific knowledge that may not be present in its original training data.

This example uses [the following essay](https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt) as an input (`essay.txt`). This example uses a simple in-memory vector database to store and retrieve relevant information. For a more in-depth guide, check out the [RAG Chatbot Guide](/docs/guides/rag-chatbot) which will show you how to build a RAG chatbot with [Next.js](https://nextjs.org), [Drizzle ORM](https://orm.drizzle.team/) and [Postgres](https://postgresql.org).

```ts
import fs from 'fs';
import path from 'path';
import dotenv from 'dotenv';
import { openai } from '@ai-sdk/openai';
import { cosineSimilarity, embed, embedMany, generateText } from 'ai';

dotenv.config();

async function main() {
const db: { embedding: number[]; value: string }[] = [];

const essay = fs.readFileSync(path.join(__dirname, 'essay.txt'), 'utf8');
const chunks = essay
.split('.')
.map(chunk => chunk.trim())
.filter(chunk => chunk.length > 0 && chunk !== '\n');

const { embeddings } = await embedMany({
model: openai.embedding('text-embedding-3-small'),
values: chunks,
});
embeddings.forEach((e, i) => {
db.push({
embedding: e,
value: chunks[i],
});
});

const input =
'What were the two main things the author worked on before college?';

const { embedding } = await embed({
model: openai.embedding('text-embedding-3-small'),
value: input,
});
const context = db
.map(item => ({
document: item,
similarity: cosineSimilarity(embedding, item.embedding),
}))
.sort((a, b) => b.similarity - a.similarity)
.slice(0, 3)
.map(r => r.document.value)
.join('\n');

const { text } = await generateText({
model: openai('gpt-4o'),
prompt: `Answer the following question based only on the provided context:
${context}
Question: ${input}`,
});
console.log(text);
}

main().catch(console.error);
```

0 comments on commit 2043351

Please sign in to comment.