Course: Algorithms & Data Structures
A website dashboard created with Python and HTML for Data Structure Argorithm course in International University - VNUHCM!
Order | Name | ID | Github account | |
---|---|---|---|---|
1 | Dương Trọng Nghĩa | ITITIU21256 | [email protected] | dtnghia2010 |
2 | Ngô Thị Thương | ITCSIU21160 | [email protected] | thuongngo050902 |
3 | Nguyễn Phạm Kỳ Phương | ITITIU21287 | [email protected] | npkyphuong04 |
4 | Nguyễn Anh Thắng | ITCSIU21233 | [email protected] | nathang0147 |
- Open the terminal on your IDE
- Clone the repo
git clone https://github.com/dtnghia2010/DataVisualization
- Check the file status
git status
- Change branch
git checkout 'branch_name'
- Install Django Framework
- Windows:
py -m pip install Django
- Unix/MacOS:
python -m pip install Django
- Windows:
- Download some pakages of the project
pip install pandas
pip install matplotlib
pip install sikit-learn
pip install django-import-export
pip install numpy
Order | Task | Person | Contribution (%) |
---|---|---|---|
1 | Search Algorithm, Visualize Add_data and Upload_file | Ngô Thương | 25 |
2 | Linear Regression, Upload_file with CSV | Trọng Nghĩa | 25 |
3 | Interface, Delete Data | Kỳ Phương | 25 |
4 | Sort Algorithm, Rename Chart | Anh Thắng | 25 |
- In this project, we use templates from Chart.js to generate charts.
- Example code to create a chart
<!-- Display your chart here using listlabels and listdatas --> <canvas id="myChart" width="400" height="400" class="mb-4 pt-3"></canvas> <script> var ctx = document.getElementById('myChart').getContext('2d'); var myChart = new Chart(ctx, { type: 'bar', data: { labels: {{ listlabels|safe }}, datasets: [{ label: 'Attribute2', data: {{ listdatas|safe }}, backgroundColor: 'rgba(75, 192, 192, 0.2)', borderColor: 'rgba(75, 192, 192, 1)', borderWidth: 1 }] }, options: { scales: { y: { beginAtZero: true } } } }); </script>
We have 2 main parts divided specifically: Add Data & Upload File. In each part, we use some features like algorithms to express them. Furthermore, we have developed one more extra feature, which is Linear Regression Algorithms - Prediction Data.
In this field, we use some features, such as:
- Sorting Algorithm (Quick Sort Algorithm)
- Searching Algorithm (Binary Search Algorithm)
- Delete Data
We need to provide a file that has the '.csv' extension. Therefore, the algorithms below will be used appropriately:
- Sorting Algorithm (Quick Sort Algorithm)
- Searching Algorithm (Binary Search Algorithm)
Linear Regression is a supervised learning algorithm which is both a Statistical and a Machine Learning Algorithm. Based on the supplied input value X, it is used to foresee the real-valued output Y.
Similar to the Upload File section, we also need to input a file with the extension '.csv', so that the data can be converted to chart form using 'matplotlib'.
-
First, we provide a file 'testData.csv' - containing population data of countries around the world; next, enter the values 'Brazil', '2014', '2022', '2023' into the blanks such as Label, From, To, Prediction, respectively:
-
Then, we will have a result like this:
- Task allocation for each team member
- Using platform for communication
6. Acknowledgments🧠
7. References🔖
- Python tutorial
- Django tutorial
- Add Data & Chart
- Read '.csv' file
- Django and matplotlib integration
- Linear Regression Implementation From Scratch using Python