An R package for data mining in microbial community ecology
In microbial community ecology, with the development of high-throughput sequencing techniques, the increasing data amount and complexity make the community data analysis and management a challenge. There has been a lot of R packages created for the microbiome profiling analysis. However, it is still difficult to perform data mining fast and efficiently. Therefore, we created R microeco package.
- R6 Class to store and analyze data; fast, flexible and modularized
- Taxonomic abundance analysis
- Venn diagram
- Alpha diversity
- Beta diversity
- Differential abundance test
- Machine learning
- Null model analysis
- Network analysis
- Environmental data analysis
- Functional prediction
If you do not already have R/RStudio installed, do as follows.
Put R in the computer env PATH, for example your_directory\R-4.1.0\bin\x64
Open RStudio...Tools...Global Options...Packages, select the appropriate mirror in Primary CRAN repository.
Install microeco package from CRAN directly.
install.packages("microeco")
Or install the latest development version from github.
# If devtools package is not installed, first install it
install.packages("devtools")
# then install microeco
devtools::install_github("ChiLiubio/microeco")
See the detailed package tutorial (https://chiliubio.github.io/microeco_tutorial/). The backup tutorial website in gitee is also available (http://chiliubio.gitee.io/microeco_tutorial/). Please use the class name to search the help documents (e.g. ?microtable). Constructing the basic microtable object from other tools/platforms (e.g. QIIME, QIIME2, HUMAnN, Kraken2 and phyloseq) can be easily achieved with the package file2meco (https://github.com/ChiLiubio/file2meco).
Chi Liu, Yaoming Cui, Xiangzhen Li and Minjie Yao. 2021. microeco: an R package for data mining in microbial community ecology. FEMS Microbiology Ecology, 97(2): fiaa255. https://doi.org/10.1093/femsec/fiaa255
We welcome any contribution, including but not limited to code, idea and tutorial. Please report errors and questions on github Issues. Any contribution via Pull requests or Email([email protected]) will be appreciated. By participating in this project you agree to abide by the terms outlined in the Contributor Code of Conduct.
- Louca, S., Parfrey, L. W., & Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science, 353(6305), 1272. DOI: 10.1126/science.aaf4507
- Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., … Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20(1), 241–248.
- Põlme, S., Abarenkov, K., Henrik Nilsson, R. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity 105, 1–16 (2020). DOI: 10.1007/s13225-020-00466-2
- Aßhauer, K. P., Wemheuer, B., Daniel, R., & Meinicke, P. (2015). Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 31(17), 2882–2884.
- Wemheuer, F., Taylor, J.A., Daniel, R. et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environmental Microbiome 15, 11 (2020). DOI: 10.1186/s40793-020-00358-7
- Liu, C., Yao, M., Stegen, J. C., Rui, J., Li, J., & Li, X. (2017). Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse. Scientific Reports, 7(1), 17492.
- Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12(6), R60.
- Chi Liu, Yaoming Cui, Xiangzhen Li, Minjie Yao, microeco: an R package for data mining in microbial community ecology, FEMS Microbiology Ecology, Volume 97, Issue 2, February 2021, fiaa255.
- An, J., Liu, C., Wang, Q., Yao, M., Rui, J., Zhang, S., & Li, X. (2019). Soil bacterial community structure in Chinese wetlands. Geoderma, 337, 290–299.
- Tackmann, J., Matias Rodrigues, J. F., & Mering, C. von. (2019). Rapid inference of direct interactions in large-scale ecological networks from heterogeneous microbial sequencing data. Cell Systems, 9(3), 286–296 e8.
- White, J., Nagarajan, N., & Pop, M. (2009). Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Computational Biology, 5(4), e1000352.
- Kurtz ZD, Muller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 2015; 11: e1004226.
- McMurdie PJ, Holmes S (2013) phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLOS ONE 8(4): e61217.
- Paulson, J., Stine, O., Bravo, H. et al. Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10, 1200–1202 (2013). DOI: 10.1038/nmeth.2658
- Deng Y, Jiang Y-H, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC bioinformatics 2012; 13: 113.
- Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: Community ecology package. 2019.
- Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010; 26: 1463–1464.
- Other references in tutorial