-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into equation_class_extruded_mesh_check
- Loading branch information
Showing
15 changed files
with
1,105 additions
and
166 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,163 @@ | ||
""" | ||
A moist convective version of the Williamson 2 shallow water test (steady state | ||
geostrophically-balanced flow). The saturation function depends on height, | ||
with a constant background buoyancy/temperature field. | ||
Vapour is initialised very close to saturation and small overshoots will | ||
generate clouds. | ||
""" | ||
from gusto import * | ||
from firedrake import (IcosahedralSphereMesh, SpatialCoordinate, sin, cos, exp) | ||
import sys | ||
|
||
# ----------------------------------------------------------------- # | ||
# Test case parameters | ||
# ----------------------------------------------------------------- # | ||
|
||
dt = 120 | ||
|
||
if '--running-tests' in sys.argv: | ||
tmax = dt | ||
dumpfreq = 1 | ||
else: | ||
day = 24*60*60 | ||
tmax = 5*day | ||
ndumps = 5 | ||
dumpfreq = int(tmax / (ndumps*dt)) | ||
|
||
R = 6371220. | ||
u_max = 20 | ||
phi_0 = 3e4 | ||
epsilon = 1/300 | ||
theta_0 = epsilon*phi_0**2 | ||
g = 9.80616 | ||
H = phi_0/g | ||
xi = 0 | ||
q0 = 200 | ||
beta1 = 110 | ||
alpha = 16 | ||
gamma_v = 0.98 | ||
qprecip = 1e-4 | ||
gamma_r = 1e-3 | ||
|
||
# ----------------------------------------------------------------- # | ||
# Set up model objects | ||
# ----------------------------------------------------------------- # | ||
|
||
# Domain | ||
mesh = IcosahedralSphereMesh(radius=R, refinement_level=3, degree=2) | ||
degree = 1 | ||
domain = Domain(mesh, dt, 'BDM', degree) | ||
x = SpatialCoordinate(mesh) | ||
|
||
# Equations | ||
parameters = ShallowWaterParameters(H=H, g=g) | ||
Omega = parameters.Omega | ||
fexpr = 2*Omega*x[2]/R | ||
|
||
tracers = [WaterVapour(space='DG'), CloudWater(space='DG'), Rain(space='DG')] | ||
|
||
eqns = ShallowWaterEquations(domain, parameters, fexpr=fexpr, | ||
u_transport_option='vector_advection_form', | ||
active_tracers=tracers) | ||
|
||
# IO | ||
dirname = "moist_convective_williamson2" | ||
output = OutputParameters(dirname=dirname, | ||
dumpfreq=dumpfreq, | ||
dumplist_latlon=['D', 'D_error'], | ||
dump_nc=True, | ||
dump_vtus=True) | ||
|
||
diagnostic_fields = [CourantNumber(), RelativeVorticity(), | ||
PotentialVorticity(), | ||
ShallowWaterKineticEnergy(), | ||
ShallowWaterPotentialEnergy(parameters), | ||
ShallowWaterPotentialEnstrophy(), | ||
SteadyStateError('u'), SteadyStateError('D'), | ||
SteadyStateError('water_vapour'), | ||
SteadyStateError('cloud_water')] | ||
|
||
io = IO(domain, output, diagnostic_fields=diagnostic_fields) | ||
|
||
|
||
# define saturation function | ||
def sat_func(x_in): | ||
h = x_in.split()[1] | ||
lamda, phi, _ = lonlatr_from_xyz(x[0], x[1], x[2]) | ||
numerator = theta_0 + sigma*((cos(phi))**2) * ((w + sigma)*(cos(phi))**2 + 2*(phi_0 - w - sigma)) | ||
denominator = phi_0**2 + (w + sigma)**2*(sin(phi))**4 - 2*phi_0*(w + sigma)*(sin(phi))**2 | ||
theta = numerator/denominator | ||
return q0/(g*h) * exp(20*(theta)) | ||
|
||
|
||
transport_methods = [DGUpwind(eqns, field_name) for field_name in eqns.field_names] | ||
|
||
limiter = DG1Limiter(domain.spaces('DG')) | ||
|
||
transported_fields = [TrapeziumRule(domain, "u"), | ||
SSPRK3(domain, "D"), | ||
SSPRK3(domain, "water_vapour", limiter=limiter), | ||
SSPRK3(domain, "cloud_water", limiter=limiter), | ||
SSPRK3(domain, "rain", limiter=limiter) | ||
] | ||
|
||
linear_solver = MoistConvectiveSWSolver(eqns) | ||
|
||
sat_adj = SWSaturationAdjustment(eqns, sat_func, | ||
time_varying_saturation=True, | ||
convective_feedback=True, beta1=beta1, | ||
gamma_v=gamma_v, time_varying_gamma_v=False, | ||
parameters=parameters) | ||
|
||
inst_rain = InstantRain(eqns, qprecip, vapour_name="cloud_water", | ||
rain_name="rain", gamma_r=gamma_r) | ||
|
||
physics_schemes = [(sat_adj, ForwardEuler(domain)), | ||
(inst_rain, ForwardEuler(domain))] | ||
|
||
stepper = SemiImplicitQuasiNewton(eqns, io, | ||
transport_schemes=transported_fields, | ||
spatial_methods=transport_methods, | ||
linear_solver=linear_solver, | ||
physics_schemes=physics_schemes) | ||
|
||
# ----------------------------------------------------------------- # | ||
# Initial conditions | ||
# ----------------------------------------------------------------- # | ||
|
||
u0 = stepper.fields("u") | ||
D0 = stepper.fields("D") | ||
v0 = stepper.fields("water_vapour") | ||
|
||
lamda, phi, _ = lonlatr_from_xyz(x[0], x[1], x[2]) | ||
|
||
uexpr = xyz_vector_from_lonlatr(u_max*cos(phi), 0, 0, x) | ||
g = parameters.g | ||
w = Omega*R*u_max + (u_max**2)/2 | ||
sigma = 0 | ||
|
||
Dexpr = H - (1/g)*(w)*((sin(phi))**2) | ||
D_for_v = H - (1/g)*(w + sigma)*((sin(phi))**2) | ||
|
||
# though this set-up has no buoyancy, we use the expression for theta to set up | ||
# the initial vapour | ||
numerator = theta_0 + sigma*((cos(phi))**2) * ((w + sigma)*(cos(phi))**2 + 2*(phi_0 - w - sigma)) | ||
denominator = phi_0**2 + (w + sigma)**2*(sin(phi))**4 - 2*phi_0*(w + sigma)*(sin(phi))**2 | ||
theta = numerator/denominator | ||
|
||
initial_msat = q0/(g*Dexpr) * exp(20*theta) | ||
vexpr = (1 - xi) * initial_msat | ||
|
||
u0.project(uexpr) | ||
D0.interpolate(Dexpr) | ||
v0.interpolate(vexpr) | ||
|
||
# Set reference profiles | ||
Dbar = Function(D0.function_space()).assign(H) | ||
stepper.set_reference_profiles([('D', Dbar)]) | ||
|
||
# ----------------------------------------------------------------- # | ||
# Run | ||
# ----------------------------------------------------------------- # | ||
|
||
stepper.run(t=0, tmax=tmax) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.