Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Increment form for implicit RK added and tested #566

Merged
merged 19 commits into from
Jan 7, 2025
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 28 additions & 59 deletions gusto/time_discretisation/explicit_runge_kutta.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,13 +123,9 @@ def __init__(self, domain, butcher_matrix, field_name=None,
limiter=limiter, options=options,
augmentation=augmentation)
self.butcher_matrix = butcher_matrix
self.nbutcher = int(np.shape(self.butcher_matrix)[0])
self.nStages = int(np.shape(self.butcher_matrix)[0])
self.rk_formulation = rk_formulation

@property
def nStages(self):
return self.nbutcher

def setup(self, equation, apply_bcs=True, *active_labels):
"""
Set up the time discretisation based on the equation.
Expand Down Expand Up @@ -163,7 +159,7 @@ def solver(self):
for stage in range(self.nStages):
# setup linear solver using lhs and rhs defined in derived class
problem = NonlinearVariationalProblem(
self.lhs[stage].form - self.rhs[stage].form,
self.res[stage].form,
self.field_i[stage+1], bcs=self.bcs
)
solver_name = self.field_name+self.__class__.__name__+str(stage)
Expand All @@ -176,7 +172,7 @@ def solver(self):

elif self.rk_formulation == RungeKuttaFormulation.linear:
problem = NonlinearVariationalProblem(
self.lhs - self.rhs[0], self.x1, bcs=self.bcs
self.res[0], self.x1, bcs=self.bcs
)
solver_name = self.field_name+self.__class__.__name__
solver = NonlinearVariationalSolver(
Expand All @@ -186,7 +182,7 @@ def solver(self):

# Set up problem for final step
problem_last = NonlinearVariationalProblem(
self.lhs - self.rhs[1], self.x1, bcs=self.bcs
self.res[1], self.x1, bcs=self.bcs
)
solver_name = self.field_name+self.__class__.__name__+'_last'
solver_last = NonlinearVariationalSolver(
Expand All @@ -202,54 +198,21 @@ def solver(self):
)

@cached_property
def lhs(self):
"""Set up the discretisation's left hand side (the time derivative)."""
def res(self):
"""Set up the discretisation's residual."""

if self.rk_formulation == RungeKuttaFormulation.increment:
l = self.residual.label_map(
residual = self.residual.label_map(
lambda t: t.has_label(time_derivative),
map_if_true=replace_subject(self.x_out, old_idx=self.idx),
map_if_false=drop)

return l.form

elif self.rk_formulation == RungeKuttaFormulation.predictor:
lhs_list = []
for stage in range(self.nStages):
l = self.residual.label_map(
lambda t: t.has_label(time_derivative),
map_if_true=replace_subject(self.field_i[stage+1], old_idx=self.idx),
map_if_false=drop)
lhs_list.append(l)

return lhs_list

if self.rk_formulation == RungeKuttaFormulation.linear:
l = self.residual.label_map(
lambda t: t.has_label(time_derivative),
map_if_true=replace_subject(self.x1, old_idx=self.idx),
map_if_false=drop)

return l.form

else:
raise NotImplementedError(
'Runge-Kutta formulation is not implemented'
)

@cached_property
def rhs(self):
"""Set up the time discretisation's right hand side."""

if self.rk_formulation == RungeKuttaFormulation.increment:
r = self.residual.label_map(
all_terms,
map_if_true=replace_subject(self.x1, old_idx=self.idx))

r = r.label_map(
residual += r.label_map(
lambda t: t.has_label(time_derivative),
map_if_true=drop,
map_if_false=lambda t: -1*t)
map_if_true=drop)

# If there are no active labels, we may have no terms at this point
# So that we can still do xnp1 = xn, put in a zero term here
Expand All @@ -261,19 +224,22 @@ def rhs(self):
# Drop label from this
map_if_true=lambda t: time_derivative.remove(t),
map_if_false=drop)
r += null_term
residual += null_term

return r.form
return residual.form

elif self.rk_formulation == RungeKuttaFormulation.predictor:
rhs_list = []

residual_list = []
for stage in range(self.nStages):
residual = self.residual.label_map(
lambda t: t.has_label(time_derivative),
map_if_true=replace_subject(self.field_i[stage+1], self.idx),
map_if_false=drop)
r = self.residual.label_map(
all_terms,
map_if_true=replace_subject(self.field_i[0], old_idx=self.idx))

r = r.label_map(
residual -= r.label_map(
lambda t: t.has_label(time_derivative),
map_if_true=keep,
map_if_false=lambda t: -self.butcher_matrix[stage, 0]*self.dt*t)
Expand All @@ -285,14 +251,16 @@ def rhs(self):
map_if_false=replace_subject(self.field_i[i], old_idx=self.idx)
)

r -= self.butcher_matrix[stage, i]*self.dt*r_i

rhs_list.append(r)
residual += self.butcher_matrix[stage, i]*self.dt*r_i
residual_list.append(residual)

return rhs_list

elif self.rk_formulation == RungeKuttaFormulation.linear:
return residual_list

if self.rk_formulation == RungeKuttaFormulation.linear:
time_term = self.residual.label_map(
lambda t: t.has_label(time_derivative),
map_if_true=replace_subject(self.x1, self.idx),
map_if_false=drop)
r = self.residual.label_map(
lambda t: t.has_label(time_derivative),
map_if_true=replace_subject(self.x0, old_idx=self.idx),
Expand Down Expand Up @@ -331,8 +299,9 @@ def rhs(self):
map_if_true=keep,
map_if_false=lambda t: -self.dt*t
)

return r_all_but_last.form, r.form
res = time_term - r
res_all_but_last = time_term - r_all_but_last
return res_all_but_last.form, res.form

else:
raise NotImplementedError(
Expand Down
42 changes: 30 additions & 12 deletions gusto/time_discretisation/imex_runge_kutta.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ class IMEXRungeKutta(TimeDiscretisation):

def __init__(self, domain, butcher_imp, butcher_exp, field_name=None,
linear_solver_parameters=None, nonlinear_solver_parameters=None,
limiter=None, options=None):
limiter=None, options=None, augmentation=None):
"""
Args:
domain (:class:`Domain`): the model's domain object, containing the
Expand All @@ -82,10 +82,13 @@ def __init__(self, domain, butcher_imp, butcher_exp, field_name=None,
options to either be passed to the spatial discretisation, or
to control the "wrapper" methods, such as Embedded DG or a
recovery method. Defaults to None.
augmentation (:class:`Augmentation`): allows the equation solved in
this time discretisation to be augmented, for instances with
extra terms of another auxiliary variable. Defaults to None.
"""
super().__init__(domain, field_name=field_name,
solver_parameters=nonlinear_solver_parameters,
options=options)
options=options, augmentation=augmentation)
self.butcher_imp = butcher_imp
self.butcher_exp = butcher_exp
self.nStages = int(np.shape(self.butcher_imp)[1])
Expand Down Expand Up @@ -269,7 +272,7 @@ class IMEX_Euler(IMEXRungeKutta):
"""
def __init__(self, domain, field_name=None,
linear_solver_parameters=None, nonlinear_solver_parameters=None,
limiter=None, options=None):
limiter=None, options=None, augmentation=None):
"""
Args:
domain (:class:`Domain`): the model's domain object, containing the
Expand All @@ -286,13 +289,16 @@ def __init__(self, domain, field_name=None,
options to either be passed to the spatial discretisation, or
to control the "wrapper" methods, such as Embedded DG or a
recovery method. Defaults to None.
augmentation (:class:`Augmentation`): allows the equation solved in
this time discretisation to be augmented, for instances with
extra terms of another auxiliary variable. Defaults to None.
"""
butcher_imp = np.array([[0., 0.], [0., 1.], [0., 1.]])
butcher_exp = np.array([[0., 0.], [1., 0.], [1., 0.]])
super().__init__(domain, butcher_imp, butcher_exp, field_name,
linear_solver_parameters=linear_solver_parameters,
nonlinear_solver_parameters=nonlinear_solver_parameters,
limiter=limiter, options=options)
limiter=limiter, options=options, augmentation=augmentation)


class IMEX_ARS3(IMEXRungeKutta):
Expand All @@ -313,7 +319,7 @@ class IMEX_ARS3(IMEXRungeKutta):
"""
def __init__(self, domain, field_name=None,
linear_solver_parameters=None, nonlinear_solver_parameters=None,
limiter=None, options=None):
limiter=None, options=None, augmentation=None):
"""
Args:
domain (:class:`Domain`): the model's domain object, containing the
Expand All @@ -330,6 +336,9 @@ def __init__(self, domain, field_name=None,
options to either be passed to the spatial discretisation, or
to control the "wrapper" methods, such as Embedded DG or a
recovery method. Defaults to None.
augmentation (:class:`Augmentation`): allows the equation solved in
this time discretisation to be augmented, for instances with
extra terms of another auxiliary variable. Defaults to None.
"""
g = (3. + np.sqrt(3.))/6.
butcher_imp = np.array([[0., 0., 0.], [0., g, 0.], [0., 1-2.*g, g], [0., 0.5, 0.5]])
Expand All @@ -338,7 +347,7 @@ def __init__(self, domain, field_name=None,
super().__init__(domain, butcher_imp, butcher_exp, field_name,
linear_solver_parameters=linear_solver_parameters,
nonlinear_solver_parameters=nonlinear_solver_parameters,
limiter=limiter, options=options)
limiter=limiter, options=options, augmentation=augmentation)


class IMEX_ARK2(IMEXRungeKutta):
Expand All @@ -359,7 +368,7 @@ class IMEX_ARK2(IMEXRungeKutta):
"""
def __init__(self, domain, field_name=None,
linear_solver_parameters=None, nonlinear_solver_parameters=None,
limiter=None, options=None):
limiter=None, options=None, augmentation=None):
"""
Args:
domain (:class:`Domain`): the model's domain object, containing the
Expand All @@ -376,6 +385,9 @@ def __init__(self, domain, field_name=None,
options to either be passed to the spatial discretisation, or
to control the "wrapper" methods, such as Embedded DG or a
recovery method. Defaults to None.
augmentation (:class:`Augmentation`): allows the equation solved in
this time discretisation to be augmented, for instances with
extra terms of another auxiliary variable. Defaults to None.
"""
g = 1. - 1./np.sqrt(2.)
d = 1./(2.*np.sqrt(2.))
Expand All @@ -385,7 +397,7 @@ def __init__(self, domain, field_name=None,
super().__init__(domain, butcher_imp, butcher_exp, field_name,
linear_solver_parameters=linear_solver_parameters,
nonlinear_solver_parameters=nonlinear_solver_parameters,
limiter=limiter, options=options)
limiter=limiter, options=options, augmentation=augmentation)


class IMEX_SSP3(IMEXRungeKutta):
Expand All @@ -404,7 +416,7 @@ class IMEX_SSP3(IMEXRungeKutta):
"""
def __init__(self, domain, field_name=None,
linear_solver_parameters=None, nonlinear_solver_parameters=None,
limiter=None, options=None):
limiter=None, options=None, augmentation=None):
"""
Args:
domain (:class:`Domain`): the model's domain object, containing the
Expand All @@ -421,14 +433,17 @@ def __init__(self, domain, field_name=None,
options to either be passed to the spatial discretisation, or
to control the "wrapper" methods, such as Embedded DG or a
recovery method. Defaults to None.
augmentation (:class:`Augmentation`): allows the equation solved in
this time discretisation to be augmented, for instances with
extra terms of another auxiliary variable. Defaults to None.
"""
g = 1. - (1./np.sqrt(2.))
butcher_imp = np.array([[g, 0., 0.], [1-2.*g, g, 0.], [0.5-g, 0., g], [(1./6.), (1./6.), (2./3.)]])
butcher_exp = np.array([[0., 0., 0.], [1., 0., 0.], [0.25, 0.25, 0.], [(1./6.), (1./6.), (2./3.)]])
super().__init__(domain, butcher_imp, butcher_exp, field_name,
linear_solver_parameters=linear_solver_parameters,
nonlinear_solver_parameters=nonlinear_solver_parameters,
limiter=limiter, options=options)
limiter=limiter, options=options, augmentation=augmentation)


class IMEX_Trap2(IMEXRungeKutta):
Expand All @@ -447,7 +462,7 @@ class IMEX_Trap2(IMEXRungeKutta):
"""
def __init__(self, domain, field_name=None,
linear_solver_parameters=None, nonlinear_solver_parameters=None,
limiter=None, options=None):
limiter=None, options=None, augmentation=None):
"""
Args:
domain (:class:`Domain`): the model's domain object, containing the
Expand All @@ -464,11 +479,14 @@ def __init__(self, domain, field_name=None,
options to either be passed to the spatial discretisation, or
to control the "wrapper" methods, such as Embedded DG or a
recovery method. Defaults to None.
augmentation (:class:`Augmentation`): allows the equation solved in
this time discretisation to be augmented, for instances with
extra terms of another auxiliary variable. Defaults to None.
"""
e = 0.
butcher_imp = np.array([[0., 0., 0., 0.], [e, 0., 0., 0.], [0.5, 0., 0.5, 0.], [0.5, 0., 0., 0.5], [0.5, 0., 0., 0.5]])
butcher_exp = np.array([[0., 0., 0., 0.], [1., 0., 0., 0.], [0.5, 0.5, 0., 0.], [0.5, 0., 0.5, 0.], [0.5, 0., 0.5, 0.]])
super().__init__(domain, butcher_imp, butcher_exp, field_name,
linear_solver_parameters=linear_solver_parameters,
nonlinear_solver_parameters=nonlinear_solver_parameters,
limiter=limiter, options=options)
limiter=limiter, options=options, augmentation=augmentation)
Loading
Loading