Skip to content

Tools to search for genes in special chromosomes like sexual or B chromosomes

License

Notifications You must be signed in to change notification settings

fjruizruano/whatGene

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 

Repository files navigation

whatGene

Tools to search for genes in special chromosomes like sex or B chromosomes.

Installation

Protocol 0. De novo assembly, CDS prediction and clustering

0.1 Assembly (Trinity)

$ /usr/local/lib/trinityrnaseq-Trinity-v2.5.0/Trinity --seqType fq --max_memory 50G --left Paut-0B-Ind11_1.fq.gz,Paut-2B-Ind19_1.fq.gz --right Paut-0B-Ind11_2.fq.gz,Paut-2B-Ind19_2.fq.gz --CPU 12 --trimmomatic --full_cleanup
#  --normalize_max_read_cov <int>	defaults to 50
#  --normalize_by_read_set		run normalization separate for each pair of fastq files,
#					then one final normalization that combines the individual
#					normalized reads.
#					Consider using this if RAM limitations are a consideration.

output - assembly: Trinity.fasta

0.2 CDS extraction (Transdecoder)

$ TransDecoder.LongOrfs -t Trinity.fasta

output: emon_zb_trinity.fasta.transdecoder_dir/longest_orfs.cds

0.3 Clustering (CD-HIT)

Slow:

$ cd-hit-est -T 8 -r 1 -i longest_orfs.cds -o Trinity_cds_nr80.fasta -M 0 -aS 0.8 -c 0.8 -G 0 -g 1

Alternatively (fast):

$ cd-hit-est -r 1 -i longest_orfs.cds -T 12 -c 0.80 -o longest_orfs.cds.nr80 -M 0

output: longest_orfs.cds.nr80

Protocol 1. Coverage graphics

1.1 Map reads against a transcriptomic reference

$ ssaha2_run_multi.py list.txt reference.fasta 12

or

$ ssaha2_run_multi_pe_se.py list.txt reference.fasta 12

1.2 Generate coverage file

$ bam_coverage_join.py FastaReference ListOfBams 999999

1.3 Generate graphics

You need to prepare a samples files with libraries sorted like in the latter command. This “samples.txt” file should have this structure for each library:

Name TypeOfLibrary LibrarySIzeInNucleotides GenomeSizeInNucleotides

For each reference sequence, the script will generate a pdf page. Looking at the type of library, the script will create a line chart for each different term before the underscore symbol (_) and for each different term after the underscore (_) will include a line in the chart, calculating the mean+/-stdev if you have two or more libraries with the same term.

An example:

01-LMIG-PAT-LEG-M01_checked_1_mapped    gDNA_SLCa0B     20493125000     6300000000
04-LMIG-PDH-LEG-M12_checked_1_mapped    gDNA_SLCa0B     22651377750     6300000000
02-LMIG-PAT-LEG-M04_checked_1_mapped    gDNA_SLCaPB     20184562750     6300000000
03-LMIG-PDH-LEG-M04_checked_1_mapped    gDNA_SLCaPB     18438224500     6300000000
05-LMIG-PDH-LEG-M14_checked_1_mapped    gDNA_SLCaPB     20354837250     6300000000
06-LMIG-PDH-LEG-M15_checked_1_mapped    gDNA_SLCaPB     21084833750     6300000000
SRR764583_1_mapped      gDNA_NLW        277474348600    6300000000
01_LMIG_PAT_TES_M01_L12_1_mapped        RNAtestis_SLCa0B        31.497002       1
04_LMIG_PDH_TES_M12_L12_1_mapped        RNAtestis_SLCa0B        35.184289       1
02_LMIG_PAT_TES_M04_L12_1_mapped        RNAtestis_SLCaPB        35.837611       1
03_LMIG_PDH_TES_M04_L12_1_mapped        RNAtestis_SLCaPB        23.952951       1
05_LMIG_PDH_TES_M14_L12_1_mapped        RNAtestis_SLCaPB        48.226476       1
06_LMIG_PDH_TES_M15_L12_1_mapped        RNAtestis_SLCaPB        33.787235       1
07_LMIG_PAT_LEG_M01_L12_1_mapped        RNAleg_SLCa0B   32.427158       1
10_LMIG_PDH_LEG_M12_L12_1_mapped        RNAleg_SLCa0B   38.024871       1
08_LMIG_PAT_LEG_M04_L12_1_mapped        RNAleg_SLCaPB   33.235481       1
09_LMIG_PDH_LEG_M04_L12_1_mapped        RNAleg_SLCaPB   38.558194       1
11_LMIG_PDH_LEG_M14_L12_1_mapped        RNAleg_SLCaPB   36.287354       1
12_LMIG_PDH_LEG_M15_L12_1_mapped        RNAleg_SLCaPB   38.215901       1

In addition to this, you need to create a coordinates file with the sequences of the FASTA file that will be analyzed. The analysis will be performed following the order in this file. This is the easiest way to generate a coordinates file using the fasta file of the reference:

$ grep ">" references.fasta | sed 's/>//g' | awk {'print $1"\t\t\t"'} > coordinates.txt

In the coordinates file you can also include additional information that will be annotated in the output. The file will start with the name of the sequences (1st col.), the start and end positions of CDS (2nd col.), primer coordinates (3rd col.) and high coverage regions (4th col.). See an example below:

A012_comp60611_c0_seq61_HEM1    1-4185        234-356,678-860    1506-1780,2480-4056

Optionally, you can include a SNPs file with the position of the SNPs:

A012_comp60611_c0_seq61_HEM1    3456

Then, we can run this command selecting PDF for PDF output, SVG for SVG output and NOPLOT to only get normalized average coverages per sequence:

$ coverage_graphics.py CoverageFile SamplesFile CoordinatesFile [PDF/SVG/NOPLOT] [SNPs file]

An additional analysis works to estimate the proportion of positions in a gene with a higher normalized coverage in a 0B sample vs a +B sample. It can be useful to determine if the whole sequence is found in the B chromosome or only a part of the sequence. For this, we just need to add in the SamplesFiles the "zzz" prefix for the 0B sample and the "ppp" prefix for the +B sample. If we indicated the annotation of the CDS in the CoordinatesFile, it will get the proportion in both the whole sequence and restricted to the CDS. Here the modified SamplesFile:

01-LMIG-PAT-LEG-M01_checked_1_mapped    gDNA_zzzSLCa0B     20493125000     6300000000
04-LMIG-PDH-LEG-M12_checked_1_mapped    gDNA_zzzSLCa0B     22651377750     6300000000
02-LMIG-PAT-LEG-M04_checked_1_mapped    gDNA_pppSLCaPB     20184562750     6300000000
03-LMIG-PDH-LEG-M04_checked_1_mapped    gDNA_pppSLCaPB     18438224500     6300000000
05-LMIG-PDH-LEG-M14_checked_1_mapped    gDNA_pppSLCaPB     20354837250     6300000000
06-LMIG-PDH-LEG-M15_checked_1_mapped    gDNA_pppSLCaPB     21084833750     6300000000
SRR764583_1_mapped      gDNA_NLW        277474348600    6300000000
01_LMIG_PAT_TES_M01_L12_1_mapped        RNAtestis_SLCa0B        31.497002       1
04_LMIG_PDH_TES_M12_L12_1_mapped        RNAtestis_SLCa0B        35.184289       1
02_LMIG_PAT_TES_M04_L12_1_mapped        RNAtestis_SLCaPB        35.837611       1
03_LMIG_PDH_TES_M04_L12_1_mapped        RNAtestis_SLCaPB        23.952951       1
05_LMIG_PDH_TES_M14_L12_1_mapped        RNAtestis_SLCaPB        48.226476       1
06_LMIG_PDH_TES_M15_L12_1_mapped        RNAtestis_SLCaPB        33.787235       1
07_LMIG_PAT_LEG_M01_L12_1_mapped        RNAleg_SLCa0B   32.427158       1
10_LMIG_PDH_LEG_M12_L12_1_mapped        RNAleg_SLCa0B   38.024871       1
08_LMIG_PAT_LEG_M04_L12_1_mapped        RNAleg_SLCaPB   33.235481       1
09_LMIG_PDH_LEG_M04_L12_1_mapped        RNAleg_SLCaPB   38.558194       1
11_LMIG_PDH_LEG_M14_L12_1_mapped        RNAleg_SLCaPB   36.287354       1
12_LMIG_PDH_LEG_M15_L12_1_mapped        RNAleg_SLCaPB   38.215901       1

The information will be written in the "trunc_sum.txt" file.

Protocol 2. SNP calling

2.1 Join mappings by library type

Perform mapping for each library separately and then join in groups like these: gdna_zerob, gdna_plusb, rna_zerob, rna_plusb.

$ samtools merge -u - gdna_zerob_ind1.bam gdna_zerob_ind2.bam | samtools sort - gdna_zerob
$ samtools index gdna_zerob.bam

For the new Samtools version, the command are:

$ samtools merge -u - *bam | samtools sort -T aln.sorted - -o project_h.bam
$ samtools index gdna_zerob.bam

2.2 Join counts

Generate list of BAM files:

$ ls gdna_zerob.bam gdna_plusb.bam > list.txt

Get counts from the joined bam files and join in a single table:

$ bam_var_join.py FastaReference ListOfBams

Output: toico3.txt

2.3 snp_calling_bchr.py: SNP calling

In a text file, indicate the type of library. At least, you should include gdna_zero (library without the chromosome) and gdna_plus (library with the chromosome). Please, use the same order like in the following example:

gdna_zerob.bam    gDNA_zero
gdna_plusb.bam    gDNA_plus
rna_zerob.bam     RNA1_zero
rna_plusb.bam        RNA1_plus
rna_zerob_leg.bam    RNA2_zero
rna_plusb_leg.bam    RNA2_plus

Then we perform the SNP calling with this new file and the previously generated "toico3.txt" file:

$ snp_calling_bchr.py baba.txt toico3.txt

Outputs: snps_selected2.txt: list with the selected SNPs ref_alt2.txt: list with the variant Ref (fixed in gdna_zerob) and variant Alt (private of gdna_plusb)

2.4 Get variation per library

This protocol works to get counts for Ref and Alt variants in the selected SNPs per individual library (not per joined libraries).

Firstly, we get a table with the countings for each nucleotide for all the libraries:

$ bam_var_join.py FastaReference ListOfBams

We create a file "sel.txt" with selected positions. We can additionally apply additional filters. The "sel.txt" files looks like this:

seq1    3
seq1    84
seq2    456
seq3    123

Then we extract the positions from the ref_alt2.txt file:

$ grep -wFf sel.txt ref_alt2.txt > ref_alt3.txt

And from the toico3.txt got from individual library:

$ grep -wFf sel.txt toico3.txt > toico4.txt

Finally, we get the counts.

$ get_var_library.py

2.5 Get Reference and alternative sequences

$ sequence_ref_alt.py FastaFile ref_alt3.txt

You can also use the "ref_alt2.txt" file, if you do not apply filters for SNPs selection.

Protocol 3. Phylogenies

This protocol works for both transcriptomic and genomic libraries if we map libraries

$ bam_coverage_join.py FastaReference ListOfBams

Get majority consensus from BAM files for all the libraries of interest:

$ bam_consensus.py toico3.txt

Then we perform RAxML phylogenies with all genes in a FASTA file for a list of genes:

$ massive_phylogeny.py sequences_all_247genes_mod.fasta.fam gene_list.txt

Draw trees from the new trees:

$ massive_phylogeny_figure.py NewickList Outgroup

About

Tools to search for genes in special chromosomes like sexual or B chromosomes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages