-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #48 from flatironinstitute/ess-stats
frontend: effective sample size and related stats
- Loading branch information
Showing
3 changed files
with
585 additions
and
23 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
/* eslint-disable @typescript-eslint/no-inferrable-types */ | ||
/* eslint-disable @typescript-eslint/no-unused-vars */ | ||
/* eslint-disable prefer-const */ | ||
/* | ||
* Free FFT and convolution (TypeScript) | ||
* | ||
* Copyright (c) 2022 Project Nayuki. (MIT License) | ||
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages | ||
* | ||
* Permission is hereby granted, free of charge, to any person obtaining a copy of | ||
* this software and associated documentation files (the "Software"), to deal in | ||
* the Software without restriction, including without limitation the rights to | ||
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | ||
* the Software, and to permit persons to whom the Software is furnished to do so, | ||
* subject to the following conditions: | ||
* - The above copyright notice and this permission notice shall be included in | ||
* all copies or substantial portions of the Software. | ||
* - The Software is provided "as is", without warranty of any kind, express or | ||
* implied, including but not limited to the warranties of merchantability, | ||
* fitness for a particular purpose and noninfringement. In no event shall the | ||
* authors or copyright holders be liable for any claim, damages or other | ||
* liability, whether in an action of contract, tort or otherwise, arising from, | ||
* out of or in connection with the Software or the use or other dealings in the | ||
* Software. | ||
*/ | ||
|
||
|
||
/* | ||
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector. | ||
* The vector can have any length. This is a wrapper function. | ||
*/ | ||
export function transform(real: Array<number>|Float64Array, imag: Array<number>|Float64Array): void { | ||
const n: number = real.length; | ||
if (n != imag.length) | ||
throw new RangeError("Mismatched lengths"); | ||
if (n == 0) | ||
return; | ||
else if ((n & (n - 1)) == 0) // Is power of 2 | ||
transformRadix2(real, imag); | ||
else // More complicated algorithm for arbitrary sizes | ||
transformBluestein(real, imag); | ||
} | ||
|
||
|
||
/* | ||
* Computes the inverse discrete Fourier transform (IDFT) of the given complex vector, storing the result back into the vector. | ||
* The vector can have any length. This is a wrapper function. This transform does not perform scaling, so the inverse is not a true inverse. | ||
*/ | ||
export function inverseTransform(real: Array<number>|Float64Array, imag: Array<number>|Float64Array): void { | ||
transform(imag, real); | ||
} | ||
|
||
|
||
/* | ||
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector. | ||
* The vector's length must be a power of 2. Uses the Cooley-Tukey decimation-in-time radix-2 algorithm. | ||
*/ | ||
function transformRadix2(real: Array<number>|Float64Array, imag: Array<number>|Float64Array): void { | ||
// Length variables | ||
const n: number = real.length; | ||
if (n != imag.length) | ||
throw new RangeError("Mismatched lengths"); | ||
if (n == 1) // Trivial transform | ||
return; | ||
let levels: number = -1; | ||
for (let i = 0; i < 32; i++) { | ||
if (1 << i == n) | ||
levels = i; // Equal to log2(n) | ||
} | ||
if (levels == -1) | ||
throw new RangeError("Length is not a power of 2"); | ||
|
||
// Trigonometric tables | ||
let cosTable = new Array<number>(n / 2); | ||
let sinTable = new Array<number>(n / 2); | ||
for (let i = 0; i < n / 2; i++) { | ||
cosTable[i] = Math.cos(2 * Math.PI * i / n); | ||
sinTable[i] = Math.sin(2 * Math.PI * i / n); | ||
} | ||
|
||
// Bit-reversed addressing permutation | ||
for (let i = 0; i < n; i++) { | ||
const j: number = reverseBits(i, levels); | ||
if (j > i) { | ||
let temp: number = real[i]; | ||
real[i] = real[j]; | ||
real[j] = temp; | ||
temp = imag[i]; | ||
imag[i] = imag[j]; | ||
imag[j] = temp; | ||
} | ||
} | ||
|
||
// Cooley-Tukey decimation-in-time radix-2 FFT | ||
for (let size = 2; size <= n; size *= 2) { | ||
const halfsize: number = size / 2; | ||
const tablestep: number = n / size; | ||
for (let i = 0; i < n; i += size) { | ||
for (let j = i, k = 0; j < i + halfsize; j++, k += tablestep) { | ||
const l: number = j + halfsize; | ||
const tpre: number = real[l] * cosTable[k] + imag[l] * sinTable[k]; | ||
const tpim: number = -real[l] * sinTable[k] + imag[l] * cosTable[k]; | ||
real[l] = real[j] - tpre; | ||
imag[l] = imag[j] - tpim; | ||
real[j] += tpre; | ||
imag[j] += tpim; | ||
} | ||
} | ||
} | ||
|
||
// Returns the integer whose value is the reverse of the lowest 'width' bits of the integer 'val'. | ||
function reverseBits(val: number, width: number): number { | ||
let result: number = 0; | ||
for (let i = 0; i < width; i++) { | ||
result = (result << 1) | (val & 1); | ||
val >>>= 1; | ||
} | ||
return result; | ||
} | ||
} | ||
|
||
|
||
/* | ||
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector. | ||
* The vector can have any length. This requires the convolution function, which in turn requires the radix-2 FFT function. | ||
* Uses Bluestein's chirp z-transform algorithm. | ||
*/ | ||
function transformBluestein(real: Array<number>|Float64Array, imag: Array<number>|Float64Array): void { | ||
// Find a power-of-2 convolution length m such that m >= n * 2 + 1 | ||
const n: number = real.length; | ||
if (n != imag.length) | ||
throw new RangeError("Mismatched lengths"); | ||
let m: number = 1; | ||
while (m < n * 2 + 1) | ||
m *= 2; | ||
|
||
// Trigonometric tables | ||
let cosTable = new Array<number>(n); | ||
let sinTable = new Array<number>(n); | ||
for (let i = 0; i < n; i++) { | ||
const j: number = i * i % (n * 2); // This is more accurate than j = i * i | ||
cosTable[i] = Math.cos(Math.PI * j / n); | ||
sinTable[i] = Math.sin(Math.PI * j / n); | ||
} | ||
|
||
// Temporary vectors and preprocessing | ||
let areal: Array<number> = newArrayOfZeros(m); | ||
let aimag: Array<number> = newArrayOfZeros(m); | ||
for (let i = 0; i < n; i++) { | ||
areal[i] = real[i] * cosTable[i] + imag[i] * sinTable[i]; | ||
aimag[i] = -real[i] * sinTable[i] + imag[i] * cosTable[i]; | ||
} | ||
let breal: Array<number> = newArrayOfZeros(m); | ||
let bimag: Array<number> = newArrayOfZeros(m); | ||
breal[0] = cosTable[0]; | ||
bimag[0] = sinTable[0]; | ||
for (let i = 1; i < n; i++) { | ||
breal[i] = breal[m - i] = cosTable[i]; | ||
bimag[i] = bimag[m - i] = sinTable[i]; | ||
} | ||
|
||
// Convolution | ||
let creal = new Array<number>(m); | ||
let cimag = new Array<number>(m); | ||
convolveComplex(areal, aimag, breal, bimag, creal, cimag); | ||
|
||
// Postprocessing | ||
for (let i = 0; i < n; i++) { | ||
real[i] = creal[i] * cosTable[i] + cimag[i] * sinTable[i]; | ||
imag[i] = -creal[i] * sinTable[i] + cimag[i] * cosTable[i]; | ||
} | ||
} | ||
|
||
|
||
/* | ||
* Computes the circular convolution of the given real vectors. Each vector's length must be the same. | ||
*/ | ||
// function convolveReal(xvec: Array<number>|Float64Array, yvec: Array<number>|Float64Array, outvec: Array<number>|Float64Array): void { | ||
// const n: number = xvec.length; | ||
// if (n != yvec.length || n != outvec.length) | ||
// throw new RangeError("Mismatched lengths"); | ||
// convolveComplex(xvec, newArrayOfZeros(n), yvec, newArrayOfZeros(n), outvec, newArrayOfZeros(n)); | ||
// } | ||
|
||
|
||
/* | ||
* Computes the circular convolution of the given complex vectors. Each vector's length must be the same. | ||
*/ | ||
function convolveComplex( | ||
xreal: Array<number>|Float64Array, ximag: Array<number>|Float64Array, | ||
yreal: Array<number>|Float64Array, yimag: Array<number>|Float64Array, | ||
outreal: Array<number>|Float64Array, outimag: Array<number>|Float64Array): void { | ||
|
||
const n: number = xreal.length; | ||
if (n != ximag.length || n != yreal.length || n != yimag.length | ||
|| n != outreal.length || n != outimag.length) | ||
throw new RangeError("Mismatched lengths"); | ||
|
||
xreal = xreal.slice(); | ||
ximag = ximag.slice(); | ||
yreal = yreal.slice(); | ||
yimag = yimag.slice(); | ||
transform(xreal, ximag); | ||
transform(yreal, yimag); | ||
|
||
for (let i = 0; i < n; i++) { | ||
const temp: number = xreal[i] * yreal[i] - ximag[i] * yimag[i]; | ||
ximag[i] = ximag[i] * yreal[i] + xreal[i] * yimag[i]; | ||
xreal[i] = temp; | ||
} | ||
inverseTransform(xreal, ximag); | ||
|
||
for (let i = 0; i < n; i++) { // Scaling (because this FFT implementation omits it) | ||
outreal[i] = xreal[i] / n; | ||
outimag[i] = ximag[i] / n; | ||
} | ||
} | ||
|
||
|
||
function newArrayOfZeros(n: number): Array<number> { | ||
let result: Array<number> = []; | ||
for (let i = 0; i < n; i++) | ||
result.push(0); | ||
return result; | ||
} |
Oops, something went wrong.