Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

(Minor) Formatting proposals #111

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 18 additions & 18 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,19 +30,19 @@ I would continue adding papers to this roadmap.

## 1.2 Deep Belief Network(DBN)(Milestone of Deep Learning Eve)

**[2]** Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "**A fast learning algorithm for deep belief nets**." Neural computation 18.7 (2006): 1527-1554. [[pdf]](http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf)**(Deep Learning Eve)** :star::star::star:
**[2]** Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "**A fast learning algorithm for deep belief nets**." Neural computation 18.7 (2006): 1527-1554. [[pdf]](http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf) **(Deep Learning Eve)** :star::star::star:

**[3]** Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "**Reducing the dimensionality of data with neural networks**." Science 313.5786 (2006): 504-507. [[pdf]](http://www.cs.toronto.edu/~hinton/science.pdf) **(Milestone, Show the promise of deep learning)** :star::star::star:

## 1.3 ImageNet Evolution(Deep Learning broke out from here)

**[4]** Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "**Imagenet classification with deep convolutional neural networks**." Advances in neural information processing systems. 2012. [[pdf]](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) **(AlexNet, Deep Learning Breakthrough)** :star::star::star::star::star:

**[5]** Simonyan, Karen, and Andrew Zisserman. "**Very deep convolutional networks for large-scale image recognition**." arXiv preprint arXiv:1409.1556 (2014). [[pdf]](https://arxiv.org/pdf/1409.1556.pdf) **(VGGNet,Neural Networks become very deep!)** :star::star::star:
**[5]** Simonyan, Karen, and Andrew Zisserman. "**Very deep convolutional networks for large-scale image recognition**." arXiv preprint arXiv:1409.1556 (2014). [[pdf]](https://arxiv.org/pdf/1409.1556.pdf) **(VGGNet, Neural Networks become very deep!)** :star::star::star:

**[6]** Szegedy, Christian, et al. "**Going deeper with convolutions**." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf) **(GoogLeNet)** :star::star::star:

**[7]** He, Kaiming, et al. "**Deep residual learning for image recognition**." arXiv preprint arXiv:1512.03385 (2015). [[pdf]](https://arxiv.org/pdf/1512.03385.pdf) **(ResNet,Very very deep networks, CVPR best paper)** :star::star::star::star::star:
**[7]** He, Kaiming, et al. "**Deep residual learning for image recognition**." arXiv preprint arXiv:1512.03385 (2015). [[pdf]](https://arxiv.org/pdf/1512.03385.pdf) **(ResNet, Very very deep networks, CVPR best paper)** :star::star::star::star::star:

## 1.4 Speech Recognition Evolution

Expand All @@ -58,9 +58,9 @@ I would continue adding papers to this roadmap.

**[13]** W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig "**Achieving Human Parity in Conversational Speech Recognition**." arXiv preprint arXiv:1610.05256 (2016). [[pdf]](https://arxiv.org/pdf/1610.05256v1) **(State-of-the-art in speech recognition, Microsoft)** :star::star::star::star:

>After reading above papers, you will have a basic understanding of the Deep Learning history, the basic architectures of Deep Learning model(including CNN, RNN, LSTM) and how deep learning can be applied to image and speech recognition issues. The following papers will take you in-depth understanding of the Deep Learning method, Deep Learning in different areas of application and the frontiers. I suggest that you can choose the following papers based on your interests and research direction.
>After reading above papers, you will have a basic understanding of the Deep Learning history, the basic architectures of Deep Learning model (including CNN, RNN, LSTM) and how deep learning can be applied to image and speech recognition issues. The following papers will take you in-depth understanding of the Deep Learning method, Deep Learning in different areas of application and the frontiers. I suggest that you can choose the following papers based on your interests and research direction.

#2 Deep Learning Method
# 2 Deep Learning Method

## 2.1 Model

Expand All @@ -72,9 +72,9 @@ I would continue adding papers to this roadmap.

**[17]** Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "**Layer normalization**." arXiv preprint arXiv:1607.06450 (2016). [[pdf]](https://arxiv.org/pdf/1607.06450.pdf?utm_source=sciontist.com&utm_medium=refer&utm_campaign=promote) **(Update of Batch Normalization)** :star::star::star::star:

**[18]** Courbariaux, Matthieu, et al. "**Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1**." [[pdf]](https://pdfs.semanticscholar.org/f832/b16cb367802609d91d400085eb87d630212a.pdf) **(New Model,Fast)** :star::star::star:
**[18]** Courbariaux, Matthieu, et al. "**Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1**." [[pdf]](https://pdfs.semanticscholar.org/f832/b16cb367802609d91d400085eb87d630212a.pdf) **(New Model, Fast)** :star::star::star:

**[19]** Jaderberg, Max, et al. "**Decoupled neural interfaces using synthetic gradients**." arXiv preprint arXiv:1608.05343 (2016). [[pdf]](https://arxiv.org/pdf/1608.05343) **(Innovation of Training Method,Amazing Work)** :star::star::star::star::star:
**[19]** Jaderberg, Max, et al. "**Decoupled neural interfaces using synthetic gradients**." arXiv preprint arXiv:1608.05343 (2016). [[pdf]](https://arxiv.org/pdf/1608.05343) **(Innovation of Training Method, Amazing Work)** :star::star::star::star::star:

**[20]** Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. "Net2net: Accelerating learning via knowledge transfer." arXiv preprint arXiv:1511.05641 (2015). [[pdf]](https://arxiv.org/abs/1511.05641) **(Modify previously trained network to reduce training epochs)** :star::star::star:

Expand All @@ -86,11 +86,11 @@ I would continue adding papers to this roadmap.

**[23]** Kingma, Diederik, and Jimmy Ba. "**Adam: A method for stochastic optimization**." arXiv preprint arXiv:1412.6980 (2014). [[pdf]](http://arxiv.org/pdf/1412.6980) **(Maybe used most often currently)** :star::star::star:

**[24]** Andrychowicz, Marcin, et al. "**Learning to learn by gradient descent by gradient descent**." arXiv preprint arXiv:1606.04474 (2016). [[pdf]](https://arxiv.org/pdf/1606.04474) **(Neural Optimizer,Amazing Work)** :star::star::star::star::star:
**[24]** Andrychowicz, Marcin, et al. "**Learning to learn by gradient descent by gradient descent**." arXiv preprint arXiv:1606.04474 (2016). [[pdf]](https://arxiv.org/pdf/1606.04474) **(Neural Optimizer, Amazing Work)** :star::star::star::star::star:

**[25]** Han, Song, Huizi Mao, and William J. Dally. "**Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding**." CoRR, abs/1510.00149 2 (2015). [[pdf]](https://pdfs.semanticscholar.org/5b6c/9dda1d88095fa4aac1507348e498a1f2e863.pdf) **(ICLR best paper, new direction to make NN running fast,DeePhi Tech Startup)** :star::star::star::star::star:
**[25]** Han, Song, Huizi Mao, and William J. Dally. "**Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding**." CoRR, abs/1510.00149 2 (2015). [[pdf]](https://pdfs.semanticscholar.org/5b6c/9dda1d88095fa4aac1507348e498a1f2e863.pdf) **(ICLR best paper, new direction to make NN running fast, DeePhi Tech Startup)** :star::star::star::star::star:

**[26]** Iandola, Forrest N., et al. "**SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size**." arXiv preprint arXiv:1602.07360 (2016). [[pdf]](http://arxiv.org/pdf/1602.07360) **(Also a new direction to optimize NN,DeePhi Tech Startup)** :star::star::star::star:
**[26]** Iandola, Forrest N., et al. "**SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size**." arXiv preprint arXiv:1602.07360 (2016). [[pdf]](http://arxiv.org/pdf/1602.07360) **(Also a new direction to optimize NN, DeePhi Tech Startup)** :star::star::star::star:

## 2.3 Unsupervised Learning / Deep Generative Model

Expand Down Expand Up @@ -134,7 +134,7 @@ I would continue adding papers to this roadmap.

**[43]** Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "**Pointer networks**." Advances in Neural Information Processing Systems. 2015. [[pdf]](http://papers.nips.cc/paper/5866-pointer-networks.pdf) :star::star::star::star:

**[44]** Graves, Alex, et al. "**Hybrid computing using a neural network with dynamic external memory**." Nature (2016). [[pdf]](https://www.dropbox.com/s/0a40xi702grx3dq/2016-graves.pdf) **(Milestone,combine above papers' ideas)** :star::star::star::star::star:
**[44]** Graves, Alex, et al. "**Hybrid computing using a neural network with dynamic external memory**." Nature (2016). [[pdf]](https://www.dropbox.com/s/0a40xi702grx3dq/2016-graves.pdf) **(Milestone, combine above papers' ideas)** :star::star::star::star::star:

## 2.6 Deep Reinforcement Learning

Expand Down Expand Up @@ -171,7 +171,7 @@ I would continue adding papers to this roadmap.

## 2.8 One Shot Deep Learning

**[59]** Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "**Human-level concept learning through probabilistic program induction**." Science 350.6266 (2015): 1332-1338. [[pdf]](http://clm.utexas.edu/compjclub/wp-content/uploads/2016/02/lake2015.pdf) **(No Deep Learning,but worth reading)** :star::star::star::star::star:
**[59]** Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. "**Human-level concept learning through probabilistic program induction**." Science 350.6266 (2015): 1332-1338. [[pdf]](http://clm.utexas.edu/compjclub/wp-content/uploads/2016/02/lake2015.pdf) **(No Deep Learning, but worth reading)** :star::star::star::star::star:

**[60]** Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. "**Siamese Neural Networks for One-shot Image Recognition**."(2015) [[pdf]](http://www.cs.utoronto.ca/~gkoch/files/msc-thesis.pdf) :star::star::star:

Expand All @@ -184,7 +184,7 @@ I would continue adding papers to this roadmap.

# 3 Applications

## 3.1 NLP(Natural Language Processing)
## 3.1 NLP (Natural Language Processing)

**[1]** Antoine Bordes, et al. "**Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing**." AISTATS(2012) [[pdf]](https://www.hds.utc.fr/~bordesan/dokuwiki/lib/exe/fetch.php?id=en%3Apubli&cache=cache&media=en:bordes12aistats.pdf) :star::star::star::star:

Expand Down Expand Up @@ -216,7 +216,7 @@ I would continue adding papers to this roadmap.

**[5]** Ren, Shaoqing, et al. "**Faster R-CNN: Towards real-time object detection with region proposal networks**." Advances in neural information processing systems. 2015. [[pdf]](https://arxiv.org/pdf/1506.01497.pdf) :star::star::star::star:

**[6]** Redmon, Joseph, et al. "**You only look once: Unified, real-time object detection**." arXiv preprint arXiv:1506.02640 (2015). [[pdf]](http://homes.cs.washington.edu/~ali/papers/YOLO.pdf) **(YOLO,Oustanding Work, really practical)** :star::star::star::star::star:
**[6]** Redmon, Joseph, et al. "**You only look once: Unified, real-time object detection**." arXiv preprint arXiv:1506.02640 (2015). [[pdf]](http://homes.cs.washington.edu/~ali/papers/YOLO.pdf) **(YOLO, Oustanding Work, really practical)** :star::star::star::star::star:

**[7]** Liu, Wei, et al. "**SSD: Single Shot MultiBox Detector**." arXiv preprint arXiv:1512.02325 (2015). [[pdf]](http://arxiv.org/pdf/1512.02325) :star::star::star:

Expand All @@ -226,15 +226,15 @@ Region-based Fully Convolutional Networks**." arXiv preprint arXiv:1605.06409 (2
**[9]** He, Gkioxari, et al. "**Mask R-CNN**" arXiv preprint arXiv:1703.06870 (2017). [[pdf]](https://arxiv.org/abs/1703.06870) :star::star::star::star:
## 3.3 Visual Tracking

**[1]** Wang, Naiyan, and Dit-Yan Yeung. "**Learning a deep compact image representation for visual tracking**." Advances in neural information processing systems. 2013. [[pdf]](http://papers.nips.cc/paper/5192-learning-a-deep-compact-image-representation-for-visual-tracking.pdf) **(First Paper to do visual tracking using Deep Learning,DLT Tracker)** :star::star::star:
**[1]** Wang, Naiyan, and Dit-Yan Yeung. "**Learning a deep compact image representation for visual tracking**." Advances in neural information processing systems. 2013. [[pdf]](http://papers.nips.cc/paper/5192-learning-a-deep-compact-image-representation-for-visual-tracking.pdf) **(First Paper to do visual tracking using Deep Learning, DLT Tracker)** :star::star::star:

**[2]** Wang, Naiyan, et al. "**Transferring rich feature hierarchies for robust visual tracking**." arXiv preprint arXiv:1501.04587 (2015). [[pdf]](http://arxiv.org/pdf/1501.04587) **(SO-DLT)** :star::star::star::star:

**[3]** Wang, Lijun, et al. "**Visual tracking with fully convolutional networks**." Proceedings of the IEEE International Conference on Computer Vision. 2015. [[pdf]](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Wang_Visual_Tracking_With_ICCV_2015_paper.pdf) **(FCNT)** :star::star::star::star:

**[4]** Held, David, Sebastian Thrun, and Silvio Savarese. "**Learning to Track at 100 FPS with Deep Regression Networks**." arXiv preprint arXiv:1604.01802 (2016). [[pdf]](http://arxiv.org/pdf/1604.01802) **(GOTURN,Really fast as a deep learning method,but still far behind un-deep-learning methods)** :star::star::star::star:
**[4]** Held, David, Sebastian Thrun, and Silvio Savarese. "**Learning to Track at 100 FPS with Deep Regression Networks**." arXiv preprint arXiv:1604.01802 (2016). [[pdf]](http://arxiv.org/pdf/1604.01802) **(GOTURN, Really fast as a deep learning method, but still far behind un-deep-learning methods)** :star::star::star::star:

**[5]** Bertinetto, Luca, et al. "**Fully-Convolutional Siamese Networks for Object Tracking**." arXiv preprint arXiv:1606.09549 (2016). [[pdf]](https://arxiv.org/pdf/1606.09549) **(SiameseFC,New state-of-the-art for real-time object tracking)** :star::star::star::star:
**[5]** Bertinetto, Luca, et al. "**Fully-Convolutional Siamese Networks for Object Tracking**." arXiv preprint arXiv:1606.09549 (2016). [[pdf]](https://arxiv.org/pdf/1606.09549) **(SiameseFC, New state-of-the-art for real-time object tracking)** :star::star::star::star:

**[6]** Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. "**Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking**." ECCV (2016) [[pdf]](http://www.cvl.isy.liu.se/research/objrec/visualtracking/conttrack/C-COT_ECCV16.pdf) **(C-COT)** :star::star::star::star:

Expand Down Expand Up @@ -315,7 +315,7 @@ Region-based Fully Convolutional Networks**." arXiv preprint arXiv:1605.06409 (2

**[7]** Vincent Dumoulin, Jonathon Shlens and Manjunath Kudlur. "**A learned representation for artistic style**." arXiv preprint arXiv:1610.07629 (2016). [[pdf]](https://arxiv.org/pdf/1610.07629v1.pdf) :star::star::star::star:

**[8]** Gatys, Leon and Ecker, et al."**Controlling Perceptual Factors in Neural Style Transfer**." arXiv preprint arXiv:1611.07865 (2016). [[pdf]](https://arxiv.org/pdf/1611.07865.pdf) **(control style transfer over spatial location,colour information and across spatial scale)**:star::star::star::star:
**[8]** Gatys, Leon and Ecker, et al."**Controlling Perceptual Factors in Neural Style Transfer**." arXiv preprint arXiv:1611.07865 (2016). [[pdf]](https://arxiv.org/pdf/1611.07865.pdf) **(control style transfer over spatial location, colour information and across spatial scale)**:star::star::star::star:

**[9]** Ulyanov, Dmitry and Lebedev, Vadim, et al. "**Texture Networks: Feed-forward Synthesis of Textures and Stylized Images**." arXiv preprint arXiv:1603.03417(2016). [[pdf]](http://arxiv.org/abs/1603.03417) **(texture generation and style transfer)** :star::star::star::star:

Expand Down