Skip to content

fox-techniques/plutus-pairtrading

Repository files navigation

PLUTUS: Pair-Trading Toolkit

Python PyPI - Version PyPI Downloads License: MIT GitHub

PLUTUS is a Python-based toolkit for performing pair-trading analysis. This project is designed for educational purposes and provides tools for:

  • Fetching and processing financial data.
  • Conducting statistical tests (stationarity and cointegration).
  • Performing feature engineering.
  • Visualizing financial time-series data.

Table of Contents

Documentation

The full documentation is available on GitHub Pages.

Key Features

1. Data Acquisition

  • Fetch historical financial data using Yahoo Finance API.
  • Store and manage time-series data in a structured format.
  • Combine and preprocess data for analysis.

2. Statistical Tests

  • Stationarity Tests

    • Augmented Dickey-Fuller Test (ADF): Tests whether a time series is stationary.
    • Phillips-Perron Test (PP): Handles autocorrelations and heteroskedasticity.
    • KPSS Test: Tests for trend stationarity.
  • Cointegration Tests

    • Engle-Granger Test: Identifies long-term equilibrium relationships.
    • Phillips-Ouliaris Test: Handles residual-based cointegration testing.
    • Johansen Test: Detects multiple cointegration vectors.

3. Feature Engineering

  • Compute periodic returns (daily, weekly, monthly).
  • Apply logarithmic and exponential transformations.
  • Calculate correlation matrices and filter securities based on thresholds.
  • Identify cointegrated pairs for pair trading.

4. Data Visualization

  • Plot financial time-series data.
  • Generate dual-axis plots for comparing securities.
  • Visualize correlation matrices.
  • Plot autocorrelation and partial autocorrelation.

Installation

Install Plutus Pair-Trading Toolkit using pip:

pip install plutus-pairtrading

Note: Requires Python 3.10 or above.

Quick Start

Here’s a quick example to use PLUTUS pair-trading tookit.

  import plutus_pairtrading.data_acquisitions as dacq
  import plutus_pairtrading.data_generations as dgen
  import plutus_pairtrading.data_visualizations as dviz

  # Fetch stock data for multiple securities
  AAPL_df = dacq.fetch_yahoo_finance_data("AAPL", start_date="2015-01-01", end_date="2021-01-01")
  MSFT_df = dacq.fetch_yahoo_finance_data("MSFT", start_date="2015-01-01", end_date="2021-01-01")
  GOOG_df = dacq.fetch_yahoo_finance_data("GOOG", start_date="2015-01-01", end_date="2021-01-01")
  TSLA_df = dacq.fetch_yahoo_finance_data("TSLA", start_date="2015-01-01", end_date="2021-01-01")

  # Combine the data into a single DataFrame
  stock_df = dacq.combine_dataframes([AAPL_df, MSFT_df, GOOG_df, TSLA_df])

  # Perform pair identification
  pairs_df = dgen.pairs_identification(
      data=stock_df,
      stationarity_method="ADF",
      cointegration_method="phillips-ouliaris",
      stationarity_significance_level=0.05,
      coint_significance_level=0.05,
  )

  # Display the identified pairs
  print(pairs_df)

Contribution

We welcome contributions! Visit our Github repository, and to contribute:

  1. Fork the repository.
  2. Create a branch (git checkout -b feature/NewFeature).
  3. Commit your changes (git commit -m 'Add NewFeature').
  4. Push to the branch (git push origin feature/NewFeature).
  5. Open a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.