The framework is implemented and tested with Ubuntu 16.04, CUDA 8.0/9.0, Python 3, Pytorch 0.4/1.0/1.1, NVIDIA TITANX GPU.
-
Cuda & Cudnn & Python & Pytorch
This project is tested with CUDA 8.0/9.0, Python 3, Pytorch 0.4/1.0, NVIDIA TITANX GPUs.
Please install proper CUDA and CUDNN version, and then install Anaconda3 and Pytorch. Almost all the packages we use are covered by Anaconda.
-
My settings
source ~/anaconda3/bin/activate (python 3.6.5) (base) pip list torch 0.4.1 torchvision 0.2.2.post3 numpy 1.18.1 numpydoc 0.8.0 numba 0.42.0 opencv-python 4.0.0.21
Download and unzip the datasets: MiniImageNet, TieredImageNet, DomainNet.
Here we provide the datasets of target domain in Google Drive, miniImageNet, tieredImageNet.
Format: (E.g. mini-imagenet)
MINI_DIR/
-- train/
-- n01532829/
-- n01558993/
...
-- train_new_domain/
-- val/
-- val_new_domain/
-- test/
-- test_new_domain/
First set the dataset path MINI_DIR/, TIERED_DIR/, DOMAIN_DIR/
for the three datasets.
For each dataset, we use its training set to train a pre-trained model (e.g. tiered-imagenet).
cd pretrain/
python -u main_resnet.py --epochs 50 --batch_size 1024 --dir_path TIERED_DIR 2>&1 | tee log.txt &
We then use the corresponding pre-trained model to train on each dataset. (e.g. mini-imagenet)
python -u train_cross.py --gpu_id 0 --net ResNet50 --dset mini-imagenet --s_dset_path MINI_DIR --fsl_test_path MINI_DIR --shot 5 --train-way 16 --pretrained 'mini_checkpoint.pth.tar' --output_dir mini_way_16
python -u test.py --load MODEL_PATH --root MINI_DIR