Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: data preprocessing code of hallo #103

Merged
merged 2 commits into from
Jun 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions configs/train/stage2.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ start_ratio: 0.05
noise_offset: 0.05
snr_gamma: 5.0
enable_zero_snr: True
stage1_ckpt_dir: "./pretrained_models/hallo/stage1"
stage1_ckpt_dir: "./exp_output/stage1/"

single_inference_times: 10
inference_steps: 40
Expand All @@ -107,7 +107,7 @@ cfg_scale: 3.5
seed: 42
resume_from_checkpoint: "latest"
checkpointing_steps: 500
exp_name: "stage2_test"
exp_name: "stage2"
output_dir: "./exp_output"

ref_img_path:
Expand Down
5 changes: 3 additions & 2 deletions hallo/datasets/audio_processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ def __init__(
self.wav2vec_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(wav2vec_model_path, local_files_only=True)


def preprocess(self, wav_file: str, clip_length: int):
def preprocess(self, wav_file: str, clip_length: int=-1):
siyuzhu-fudan marked this conversation as resolved.
Show resolved Hide resolved
"""
Preprocess a WAV audio file by separating the vocals from the background and resampling it to a 16 kHz sample rate.
The separated vocal track is then converted into wav2vec2 for further processing or analysis.
Expand Down Expand Up @@ -109,7 +109,8 @@ def preprocess(self, wav_file: str, clip_length: int):
audio_length = seq_len

audio_feature = torch.from_numpy(audio_feature).float().to(device=self.device)
if seq_len % clip_length != 0:

if clip_length>0 and seq_len % clip_length != 0:
audio_feature = torch.nn.functional.pad(audio_feature, (0, (clip_length - seq_len % clip_length) * (self.sample_rate // self.fps)), 'constant', 0.0)
seq_len += clip_length - seq_len % clip_length
audio_feature = audio_feature.unsqueeze(0)
Expand Down
139 changes: 138 additions & 1 deletion hallo/datasets/image_processor.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
# pylint: disable=W0718
"""
This module is responsible for processing images, particularly for face-related tasks.
It uses various libraries such as OpenCV, NumPy, and InsightFace to perform tasks like
Expand All @@ -8,13 +9,15 @@
from typing import List

import cv2
import mediapipe as mp
import numpy as np
import torch
from insightface.app import FaceAnalysis
from PIL import Image
from torchvision import transforms

from ..utils.util import get_mask
from ..utils.util import (blur_mask, get_landmark_overframes, get_mask,
get_union_face_mask, get_union_lip_mask)

MEAN = 0.5
STD = 0.5
Expand Down Expand Up @@ -207,3 +210,137 @@ def __enter__(self):

def __exit__(self, _exc_type, _exc_val, _exc_tb):
self.close()


class ImageProcessorForDataProcessing():
"""
ImageProcessor is a class responsible for processing images, particularly for face-related tasks.
It takes in an image and performs various operations such as augmentation, face detection,
face embedding extraction, and rendering a face mask. The processed images are then used for
further analysis or recognition purposes.

Attributes:
img_size (int): The size of the image to be processed.
face_analysis_model_path (str): The path to the face analysis model.

Methods:
preprocess(source_image_path, cache_dir):
Preprocesses the input image by performing augmentation, face detection,
face embedding extraction, and rendering a face mask.

close():
Closes the ImageProcessor and releases any resources being used.

_augmentation(images, transform, state=None):
Applies image augmentation to the input images using the given transform and state.

__enter__():
Enters a runtime context and returns the ImageProcessor object.

__exit__(_exc_type, _exc_val, _exc_tb):
Exits a runtime context and handles any exceptions that occurred during the processing.
"""
def __init__(self, face_analysis_model_path, landmark_model_path, step) -> None:
if step == 2:
self.face_analysis = FaceAnalysis(
name="",
root=face_analysis_model_path,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640))
self.landmarker = None
else:
BaseOptions = mp.tasks.BaseOptions
FaceLandmarker = mp.tasks.vision.FaceLandmarker
FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
VisionRunningMode = mp.tasks.vision.RunningMode
# Create a face landmarker instance with the video mode:
options = FaceLandmarkerOptions(
base_options=BaseOptions(model_asset_path=landmark_model_path),
running_mode=VisionRunningMode.IMAGE,
)
self.landmarker = FaceLandmarker.create_from_options(options)
self.face_analysis = None

def preprocess(self, source_image_path: str):
"""
Apply preprocessing to the source image to prepare for face analysis.

Parameters:
source_image_path (str): The path to the source image.
cache_dir (str): The directory to cache intermediate results.

Returns:
None
"""
# 1. get face embdeding
face_mask, face_emb, sep_pose_mask, sep_face_mask, sep_lip_mask = None, None, None, None, None
if self.face_analysis:
for frame in sorted(os.listdir(source_image_path)):
try:
source_image = Image.open(
os.path.join(source_image_path, frame))
ref_image_pil = source_image.convert("RGB")
# 2.1 detect face
faces = self.face_analysis.get(cv2.cvtColor(
np.array(ref_image_pil.copy()), cv2.COLOR_RGB2BGR))
# use max size face
face = sorted(faces, key=lambda x: (
x["bbox"][2] - x["bbox"][0]) * (x["bbox"][3] - x["bbox"][1]))[-1]
# 2.2 face embedding
face_emb = face["embedding"]
if face_emb is not None:
break
except Exception as _:
continue

if self.landmarker:
# 3.1 get landmark
landmarks, height, width = get_landmark_overframes(
self.landmarker, source_image_path)
assert len(landmarks) == len(os.listdir(source_image_path))

# 3 render face and lip mask
face_mask = get_union_face_mask(landmarks, height, width)
lip_mask = get_union_lip_mask(landmarks, height, width)

# 4 gaussian blur
blur_face_mask = blur_mask(face_mask, (64, 64), (51, 51))
blur_lip_mask = blur_mask(lip_mask, (64, 64), (31, 31))

# 5 seperate mask
sep_face_mask = cv2.subtract(blur_face_mask, blur_lip_mask)
sep_pose_mask = 255.0 - blur_face_mask
sep_lip_mask = blur_lip_mask

return face_mask, face_emb, sep_pose_mask, sep_face_mask, sep_lip_mask

def close(self):
"""
Closes the ImageProcessor and releases any resources held by the FaceAnalysis instance.

Args:
self: The ImageProcessor instance.

Returns:
None.
"""
for _, model in self.face_analysis.models.items():
if hasattr(model, "Dispose"):
model.Dispose()

def _augmentation(self, images, transform, state=None):
if state is not None:
torch.set_rng_state(state)
if isinstance(images, List):
transformed_images = [transform(img) for img in images]
ret_tensor = torch.stack(transformed_images, dim=0) # (f, c, h, w)
else:
ret_tensor = transform(images) # (c, h, w)
return ret_tensor

def __enter__(self):
return self

def __exit__(self, _exc_type, _exc_val, _exc_tb):
self.close()
Loading
Loading