Skip to content

Commit

Permalink
spixelFCN
Browse files Browse the repository at this point in the history
  • Loading branch information
fuy34 committed Mar 25, 2020
0 parents commit 2682584
Show file tree
Hide file tree
Showing 33 changed files with 28,611 additions and 0 deletions.
25 changes: 25 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
MIT License

All contributions from “Superpixel Segmentation with Fully Convolutional Network”:
Copyright (c) 2020 Fengting Yang

All contributions from “FlowNetPytorch”:
Copyright (c) 2017 Clément Pinard

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
115 changes: 115 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# SpixelFCN: Superpixel Segmentation with Fully Convolutional Network

This is is a PyTorch implementation of the superpixel segmentation network introduced in our CVPR-20 paper:

[Superpixel Segmentation with Fully Convolutional Network](http://personal.psu.edu/fuy34)

[Fengting Yang](http://personal.psu.edu/fuy34/), [Qian Sun](https://www.linkedin.com/in/qiansuun), [Hailin Jin](https://research.adobe.com/person/hailin-jin/), and [Zihan Zhou](https://faculty.ist.psu.edu/zzhou/Home.html)

Please contact Fengting Yang ([email protected]) if you have any question.

## Prerequisites
The training code was mainly developed and tested with python 2.7, PyTorch 0.4.1, CUDA 9, and Ubuntu 16.04.

During test, we make use of the component connection method in [SSN](https://github.com/NVlabs/ssn_superpixels) to enforce the connectivity
in superpixels. The code has been included in ```/third_paty/cython```. To compile it:
```
cd third_party/cython/
python setup.py install --user
cd ../..
```
## Demo
The demo script ```run_demo.py``` provides the superpixels with grid size ```16 x 16``` using our pre-trained model (in ```/pretrained_ckpt```).
Please feel free to provide your own images by copying them into ```/demo/inputs```, and run
```
python run_demo.py --data_dir=./demo/inputs --data_suffix=jpg --output=./demo
```
The results will be generate in a new folder under ```/demo``` called ```spixel_viz```.


## Data preparation
To generate training and test dataset, please first download the data from the original [BSDS500 dataset](http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_full.tgz),
and extract it to ```<BSDS_DIR>```. Then, run
```
cd data_preprocessing
python pre_processing_bsd500.py --dataset=<BSDS_DIR> --dump_root=<DUMP_DIR>
python pre_processing_bsd500_ori.py --dataset=<BSDS_DIR> --dump_root=<DUMP_DIR>
cd ..
```
The code will generate three folders under the ```<DUMP_DIR>```, named as ```/train```, ```/val```, and ```/test```, and three ```.txt``` files
record the absolute path of the images, named as ```train.txt```, ```val.txt```, and ```test.txt```.


## Training
Once the data is prepared, we should be able to train the model by running the following command
```
python main.py --data=<DUMP_DIR> --savepath=<CKPT_LOG_DIR>
```

if we wish to continue a train process or fine-tune from a pre-trained model, we can run
```
python main.py --data=<DUMP_DIR> --savepath=<CKPT_LOG_DIR> --pretrained=<PATH_TO_THE_CKPT>
```
The code will start from the recorded status, which includes the optimizer status and epoch number.

The training log can be viewed from the `tensorboard` session by running
```
tensorboard --logdir=<CKPT_LOG_DIR> --port=8888
```

If everything is set up properly, reasonable segmentation should be observed after 10 epochs.

## Testing
We provide test code to generate: 1) superpixel visualization and 2) the```.csv``` files for evaluation.

To test on BSDS500, run
```
python run_infer_bsds.py --data_dir=<DUMP_DIR> --output=<TEST_OUTPUT_DIR> --pretrained=<PATH_TO_THE_CKPT>
```

To test on NYUv2, please first extract our pre-processed dataset from ```/nyu_test_set/nyu_preprocess_tst.tar.gz```
to ```<NYU_TEST>``` , or follow the [intruction on the superpixel benchmark](https://github.com/davidstutz/superpixel-benchmark/blob/master/docs/DATASETS.md)
to generate the test dataset, and then run
```
python run_infer_nyu.py --data_dir=<NYU_TEST> --output=<TEST_OUTPUT_DIR> --pretrained=<PATH_TO_THE_CKPT>
```

To test on other datasets, please first collect all the images into one folder ```<CUSTOM_DIR>```, and then convert them into the same
format (e.g. ```.png``` or ```.jpg```) if necessary, and run
```
python run_demo.py --data_dir=<CUSTOM_DIR> --data_suffix=<IMG_SUFFIX> --output=<TEST_OUTPUT_DIR> --pretrained=<PATH_TO_THE_CKPT>
```
Superpixels with grid size ```16 x 16``` will be generated by default. To generate the superpixel with a different grid size, we simply need to
resize the images into the approporate resolution before passing them through the code. Please refer to ```run_infer_nyu.py``` for the details.

## Evaluation
We use the code from [superpixel benchmark](https://github.com/davidstutz/superpixel-benchmark) for superpixel evaluation.
A detailed [instruction](https://github.com/davidstutz/superpixel-benchmark/blob/master/docs/BUILDING.md) is available in the repository, please

(1) download the code and build it accordingly;

(2) edit the variables ```$SUPERPIXELS```, ```IMG_PATH``` and ```GT_PATH``` in ```/eval_spixel/my_eval.sh```,

(3) run
```
cp /eval_spixel/my_eval.sh <path/to/the/benchmark>/examples/bash/
cd <path/to/the/benchmark>/examples/
bash my_eval.sh
```
several files should be generated in the ```map_csv``` folders in the corresponding test outputs;

(4) run
```
cd eval_spixel
python copy_resCSV.py --src=<TEST_OUTPUT_DIR> --dst=<PATH_TO_COLLECT_EVAL_RES>
```
(5) open ```/eval_spixel/plot_benchmark_curve.m``` , set the ```our1l_res_path``` as ```<PATH_TO_COLLECT_EVAL_RES>``` and modify the ```num_list```
according to the test setting. The default setting is for our BSDS500 test set.;

(6) run the ```plot_benchmark_curve.m```, the ```ASA Score```, ```CO Score```, and ```BR-BP curve``` of our method should
be shown on the screen. If you wish to compare our method with the others, you can first run the method and organize the data
as we state above, and uncomment the code in the ```plot_benchmark_curve.m``` to generate a similar figure shown in our papers.


## Acknowledgement
Our code is developed based on the training framework provided by [FlowNetPytorch](https://github.com/ClementPinard/FlowNetPytorch).
182 changes: 182 additions & 0 deletions data_preprocessing/pre_process_bsd500.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
import os
import numpy as np
import cv2
from scipy.io import loadmat
import argparse
from glob import glob
from joblib import Parallel, delayed
import matplotlib.pyplot as plt

parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="", help="where the filtered dataset is stored")
parser.add_argument("--dump_root", type=str, default="", help="Where to dump the data")
parser.add_argument("--b_filter", type=bool, default=False, help="We do not use this in our paper")
parser.add_argument("--num_threads", type=int, default=4, help="number of threads to use")
args = parser.parse_args()

'''
Extract each pair of image and label from .mat to generagte the data for TRAINING and VALIDATION
Please generate TEST data with pre_process_bsd500_ori_sz.py in the same folder
We follow the SSN configuration to discard all samples that have more than 50 classes in their segments, and
we use the exactaly same train, val, and test list as SSN, see the train/val/test.txt in the data_preprocessing folder for details
author: Fengting Yang
March. 1st 2019
'''

def make_dataset(dir):
cwd = os.getcwd()
train_list_path = cwd + '/train.txt'
val_list_path = cwd + '/val.txt'
train_list = []
val_list = []

try:
with open(train_list_path, 'r') as tf:
train_list_0 = tf.readlines()
for path in train_list_0:
img_path = os.path.join(dir, 'BSR/BSDS500/data/images/train', path[:-1]+ '.jpg' )
if not os.path.isfile(img_path):
print('The validate images are missing in {}'.format(os.path.dirname(img_path)))
print('Please pre-process the BSDS500 as README states and provide the correct dataset path.')
exit(1)
train_list.append(img_path)

with open (val_list_path, 'r') as vf:
val_list_0 = vf.readlines()
for path in val_list_0:
img_path = os.path.join(dir, 'BSR/BSDS500/data/images/val', path[:-1]+ '.jpg')
if not os.path.isfile(img_path):
print('The validate images are missing in {}'.format(os.path.dirname(img_path)))
print('Please pre-process the BSDS500 as README states and provide the correct dataset path.')
exit(1)
val_list.append(img_path)


except IOError:
print ('Error No avaliable list ')
return

return train_list, val_list

def convert_label(label):

problabel = np.zeros(( label.shape[0], label.shape[1], 50)).astype(np.float32)

ct = 0
for t in np.unique(label).tolist():
if ct >= 50:
print('give up sample becaues label shape is larger than 50: {0}'.format(np.unique(label).shape))
break
else:
problabel[ :, :, ct] = (label == t) #one hot
ct = ct + 1

label2 = np.squeeze(np.argmax(problabel, axis = -1)) #squashed label e.g. [1. 3. 9, 10] --> [0,1,2,3], (h*w)

return label2, problabel

def BSD_loader(path_imgs, path_label, b_filter=False):

img_ = cv2.imread(path_imgs)

# origin size 481*321 or 321*481
H_, W_, _ = img_.shape

# crop to 16*n size
if H_ == 321 and W_ == 481:
img = img_[:320, :480, :]
elif H_ == 481 and W_ == 321:
img = img_[:480, :320, :]
else:
print('It is not BSDS500 images')
exit(1)

if b_filter:
img = cv2.bilateralFilter(img, 5, 75, 75)

gtseg_lst = []

gtseg_all = loadmat(path_label)
for t in range(len(gtseg_all['groundTruth'][0])):
gtseg = gtseg_all['groundTruth'][0][t][0][0][0]

label_, _ = convert_label(gtseg)
if H_ == 321 and W_ == 481:
label = label_[:320, :480]
elif H_ == 481 and W_ == 321:
label = label_[:480, :320]

gtseg_lst.append(label)

return img, gtseg_lst

def dump_example(n, n_total, dataType, img_path):
global args
if n % 100 == 0:
print('Progress {0} {1}/{2}....' .format (dataType,n, n_total))

img, label_lst = BSD_loader(img_path, img_path.replace('images', 'groundTruth')[:-4]+'.mat', b_filter=args.b_filter)

if args.b_filter:
dump_dir = os.path.join(args.dump_root, dataType + '_b_filter_' + str(args.b_filter))
else:
dump_dir = os.path.join(args.dump_root, dataType)

if not os.path.isdir(dump_dir):
try:
os.makedirs(dump_dir)
except OSError:
if not os.path.isdir(dump_dir):
raise

img_name = os.path.basename(img_path)[:-4]
for k, label in enumerate(label_lst):
# save images
dump_img_file = os.path.join(dump_dir, '{0}_{1}_img.jpg' .format(img_name, k))
cv2.imwrite(dump_img_file, img.astype(np.uint8))

# save label
dump_label_file = os.path.join(dump_dir, '{0}_{1}_label.png' .format(img_name, k))
cv2.imwrite(dump_label_file, label.astype(np.uint8))

# save label viz
if not os.path.isdir(os.path.join(dump_dir,'label_viz')):
os.makedirs(os.path.join(dump_dir,'label_viz'))
dump_label_viz = os.path.join(dump_dir, 'label_viz', '{0}_{1}_label_viz.png'.format(img_name, k))
plt.imshow(label)
plt.axis('off')
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0, wspace=0)
plt.margins(0, 0)
plt.savefig(dump_label_viz,bbox_inches='tight',pad_inches=0)
plt.close()


def main():
datadir = args.dataset
train_list, val_list = make_dataset(datadir)

# for debug only
# for n, train_samp in enumerate(train_list):
# dump_example(n, len(train_list),'train', train_samp)

# mutil-thread running for speed
Parallel(n_jobs=args.num_threads)(delayed(dump_example)(n, len(train_list),'train', train_samp) for n, train_samp in enumerate(train_list))
Parallel(n_jobs=args.num_threads)(delayed(dump_example)(n, len(train_list),'val', val_samp) for n, val_samp in enumerate(val_list))

with open(args.dump_root + '/train.txt', 'w') as trnf:
imfiles = glob(os.path.join(args.dump_root, 'train', '*_img.jpg'))
for frame in imfiles:
trnf.write(frame + '\n')

with open(args.dump_root + '/val.txt', 'w') as trnf:
imfiles = glob(os.path.join(args.dump_root, 'val', '*_img.jpg'))
for frame in imfiles:
trnf.write(frame + '\n')

if __name__ == '__main__':
main()
Loading

0 comments on commit 2682584

Please sign in to comment.