Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Quick fix to use aweights instead of fweights in WeightedHistograms #33

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/WeightedOnlineStats.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ import Statistics
import Statistics: mean, var, std, cov, cor, median, quantile
import LinearAlgebra
import LinearAlgebra: Hermitian, lmul!, rmul!, Diagonal, diag
import StatsBase: midpoints
import StatsBase: midpoints, aweights

include("interface.jl")
include("sum.jl")
Expand Down
11 changes: 7 additions & 4 deletions src/histogram.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,9 @@ import LinearAlgebra
abstract type WeightedHistogramStat{T} <: WeightedOnlineStat{T} end
abstract type WeightedHist{T} <: WeightedHistogramStat{T} end
split_candidates(o::WeightedHistogramStat) = midpoints(o)
Statistics.mean(o::WeightedHistogramStat) = mean(midpoints(o), fweights(counts(o)))
Statistics.var(o::WeightedHistogramStat) = var(midpoints(o), fweights(counts(o)); corrected=true)

Statistics.mean(o::WeightedHistogramStat) = mean(midpoints(o), aweights(counts(o)))
Statistics.var(o::WeightedHistogramStat) = var(midpoints(o), aweights(counts(o)); corrected=true)
Statistics.std(o::WeightedHistogramStat) = sqrt.(var(o))
Statistics.median(o::WeightedHistogramStat) = quantile(o, .5)

Expand Down Expand Up @@ -128,19 +129,21 @@ end

function Statistics.quantile(o::WeightedHist, p = [0, .25, .5, .75, 1])
x, y = midpoints(o), counts(o)

N = ndims(y)
inds = findall(!iszero, y)
yweights = fweights(y[inds])
subset = collect(x)[inds]
r = ntuple(N) do idim
data = map(i->i[idim],subset)
quantile(data, fweights(y[inds]), p)
quantile(data, aweights(y[inds]), p)
end
if N==1
return r[1]
else
return r
end

end

function area(o::WeightedHist)
Expand Down Expand Up @@ -253,7 +256,7 @@ end
function Statistics.quantile(o::WeightedAdaptiveHist, p = [0, .25, .5, .75, 1])
mids, counts = value(o)
inds = findall(x->x!=0, counts) # filter out zero weights
quantile(mids[inds], fweights(counts[inds]), p)
quantile(mids[inds], aweights(counts[inds]), p)
end

function weightsum(o::WeightedAdaptiveHist)
Expand Down