Skip to content

Commit

Permalink
Sort table by efficiency.
Browse files Browse the repository at this point in the history
  • Loading branch information
geerlingguy committed May 21, 2024
1 parent 1e01f6a commit 539ed06
Showing 1 changed file with 21 additions and 21 deletions.
42 changes: 21 additions & 21 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -109,42 +109,42 @@ Higher clock speeds require more power and thus more cooling, so if you are runn
## Results
Here are a few of the results I've acquired in my testing:
Here are a few of the results I've acquired in my testing (sorted by efficiency, highest to lowest):
| Configuration | Architecture | Result | Wattage | Gflops/W |
|--- |--- |--- |--- |--- |
| [Raspberry Pi 5 (BCM2712 @ 2.4 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/18) | Arm | 30.249 Gflops | 11W | 2.75 Gflops/W |
| [Raspberry Pi 4 (BCM2711 @ 1.8 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/13) | Arm | 11.889 Gflops | 7.2W | 1.65 Gflops/W |
| [Raspberry Pi CM4 (BCM2711 @ 1.5 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/33) | Arm | 11.433 Gflops | 5.2W | 2.20 Gflops/W |
| [Raspberry Pi Zero 2 W (RP3A0-AU @ 1.0 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/26) | Arm | 0.370 Gflops | 2.1W | 0.18 Gflops/W |
| [Radxa CM5 (RK3588S2 8-core)](https://github.com/geerlingguy/top500-benchmark/issues/31) | Arm | 48.619 Gflops | 10W | 4.86 Gflops/W |
| [Ampere Altra Q64-22 @ 2.2 GHz](https://github.com/geerlingguy/top500-benchmark/issues/19) | Arm | 655.90 Gflops | 140W | 4.69 Gflops/W |
| [Orange Pi 5 (RK3588S 8-core)](https://github.com/geerlingguy/top500-benchmark/issues/14) | Arm | 53.333 Gflops | 11.5W | 4.64 Gflops/W |
| [Radxa ROCK 5B (RK3588 8-core)](https://github.com/geerlingguy/top500-benchmark/issues/8) | Arm | 51.382 Gflops | 12W | 4.32 Gflops/W |
| [Ampere Altra Max M128-28 @ 2.8 GHz](https://github.com/geerlingguy/top500-benchmark/issues/17) | Arm | 1,265.5 Gflops | 296W | 4.27 Gflops/W |
| [Radxa ROCK 5C (RK3588S2 8-core)](https://github.com/geerlingguy/top500-benchmark/issues/32) | Arm | 49.285 Gflops | 12W | 4.11 Gflops/W |
| [Ampere Altra Max M96-28 @ 2.8 GHz](https://github.com/geerlingguy/top500-benchmark/issues/10) | Arm | 1,188.3 Gflops | 295W | 4.01 Gflops/W |
| [M1 Max Mac Studio (1x M1 Max @ 3.2 GHz, in Docker)](https://github.com/geerlingguy/top500-benchmark/issues/4) | Arm | 264.32 Gflops | 66W | 4.00 Gflops/W |
| [Ampere Altra Q32-17 @ 1.7 GHz](https://github.com/geerlingguy/top500-benchmark/issues/25) | Arm | 332.07 Gflops | 100W | 3.32 Gflops/W |
| [Turing Machines RK1 (RK3588 8-core)](https://github.com/geerlingguy/top500-benchmark/issues/22) | Arm | 59.810 Gflops | 18.1 | 3.30 Gflops/W |
| [Turing Pi 2 (4x RK1 @ 2.4 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/27) | Arm | 224.60 Gflops | 73W | 3.08 Gflops/W |
| [Raspberry Pi 5 (BCM2712 @ 2.4 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/18) | Arm | 30.249 Gflops | 11W | 2.75 Gflops/W |
| [LattePanda Mu (1x N100 @ 3.4 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/30) | x86 | 62.851 Gflops | 25W | 2.51 Gflops/W |
| [Raspberry Pi CM4 (BCM2711 @ 1.5 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/33) | Arm | 11.433 Gflops | 5.2W | 2.20 Gflops/W |
| [Ampere Altra Max M128-30 @ 3.0 GHz](https://github.com/geerlingguy/top500-benchmark/issues/3) | Arm | 953.47 Gflops | 500W | 1.91 Gflops/W |
| [Turing Pi 2 (4x CM4 @ 1.5 GHz)](https://www.jeffgeerling.com/blog/2021/turing-pi-2-4-raspberry-pi-nodes-on-mini-itx-board) | Arm | 44.942 Gflops | 24.5W | 1.83 Gflops/W |
| [Lenovo M710q Tiny (1x i5-7400T @ 2.4 GHz)](https://www.jeffgeerling.com/blog/2023/rock-5-b-not-raspberry-pi-killer-yet) | x86 | 72.472 Gflops | 41W | 1.76 Gflops/W |
| [Raspberry Pi 4 (BCM2711 @ 1.8 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/13) | Arm | 11.889 Gflops | 7.2W | 1.65 Gflops/W |
| [Turing Pi 2 (4x CM4 @ 2.0 GHz)](https://www.jeffgeerling.com/blog/2021/turing-pi-2-4-raspberry-pi-nodes-on-mini-itx-board) | Arm | 51.327 Gflops | 33W | 1.54 Gflops/W |
| [DeskPi Super6c (6x CM4 @ 1.5 GHz)](https://www.jeffgeerling.com/blog/2022/pi-cluster-vs-ampere-altra-max-128-core-arm-cpu) | Arm | 60.293 Gflops | 40W | 1.50 Gflops/W |
| [DeskPi Super6c (6x CM4 @ 2.0 GHz)](https://www.jeffgeerling.com/blog/2022/pi-cluster-vs-ampere-altra-max-128-core-arm-cpu) | Arm | 70.338 Gflops | 51W | 1.38 Gflops/W |
| [Radxa CM5 (RK3588S2 8-core)](https://github.com/geerlingguy/top500-benchmark/issues/31) | Arm | 48.619 Gflops | 10W | 4.86 Gflops/W |
| [Radxa ROCK 5C (RK3588S2 8-core)](https://github.com/geerlingguy/top500-benchmark/issues/32) | Arm | 49.285 Gflops | 12W | 4.11 Gflops/W |
| [Radxa ROCK 5B (RK3588 8-core)](https://github.com/geerlingguy/top500-benchmark/issues/8) | Arm | 51.382 Gflops | 12W | 4.32 Gflops/W |
| [Orange Pi 5 (RK3588S 8-core)](https://github.com/geerlingguy/top500-benchmark/issues/14) | Arm | 53.333 Gflops | 11.5W | 4.64 Gflops/W |
| [Orange Pi CM4 (RK3566 4-core)](https://github.com/geerlingguy/top500-benchmark/issues/23) | Arm | 5.604 Gflops | 4.0W | 1.40 Gflop/W |
| [LattePanda Mu (1x N100 @ 3.4 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/30) | x86 | 62.851 Gflops | 25W | 2.51 Gflops/W |
| [Lenovo M710q Tiny (1x i5-7400T @ 2.4 GHz)](https://www.jeffgeerling.com/blog/2023/rock-5-b-not-raspberry-pi-killer-yet) | x86 | 72.472 Gflops | 41W | 1.76 Gflops/W |
| M2 MacBook Air (1x M2 @ 3.5 GHz, in Docker) | Arm | 104.68 Gflops | N/A | N/A |
| [M2 Pro MacBook Pro (1x M2 Pro, in Asahi Linux)](https://github.com/geerlingguy/top500-benchmark/issues/21#issuecomment-1792425949) | Arm | 296.93 Gflops | N/A | N/A |
| [M1 Max Mac Studio (1x M1 Max @ 3.2 GHz, in Docker)](https://github.com/geerlingguy/top500-benchmark/issues/4) | Arm | 264.32 Gflops | 66W | 4.00 Gflops/W |
| [DeskPi Super6c (6x CM4 @ 2.0 GHz)](https://www.jeffgeerling.com/blog/2022/pi-cluster-vs-ampere-altra-max-128-core-arm-cpu) | Arm | 70.338 Gflops | 51W | 1.38 Gflops/W |
| AMD Ryzen 5 5600x @ 3.7 GHz | x86 | 229 Gflops | 196W | 1.16 Gflops/W |
| [Ampere Altra Q32-17 @ 1.7 GHz](https://github.com/geerlingguy/top500-benchmark/issues/25) | Arm | 332.07 Gflops | 100W | 3.32 Gflops/W |
| [Ampere Altra Q64-22 @ 2.2 GHz](https://github.com/geerlingguy/top500-benchmark/issues/19) | Arm | 655.90 Gflops | 140W | 4.69 Gflops/W |
| [Ampere Altra Max M96-28 @ 2.8 GHz](https://github.com/geerlingguy/top500-benchmark/issues/10) | Arm | 1,188.3 Gflops | 295W | 4.01 Gflops/W |
| [Ampere Altra Max M128-28 @ 2.8 GHz](https://github.com/geerlingguy/top500-benchmark/issues/17) | Arm | 1,265.5 Gflops | 296W | 4.27 Gflops/W |
| [Ampere Altra Max M128-30 @ 3.0 GHz](https://github.com/geerlingguy/top500-benchmark/issues/3) | Arm | 953.47 Gflops | 500W | 1.91 Gflops/W |
| [Milk-V Mars CM JH7110 4-core](https://github.com/geerlingguy/top500-benchmark/issues/20) | RISC-V | 1.99 Gflops | 3.6W | 0.55 Gflops/W |
| [Lichee Console 4A TH1520 4-core](https://github.com/geerlingguy/top500-benchmark/issues/20) | RISC-V | 1.99 Gflops | 3.6W | 0.55 Gflops/W |
| [Raspberry Pi Zero 2 W (RP3A0-AU @ 1.0 GHz)](https://github.com/geerlingguy/top500-benchmark/issues/26) | Arm | 0.370 Gflops | 2.1W | 0.18 Gflops/W |
| [M2 Pro MacBook Pro (1x M2 Pro, in Asahi Linux)](https://github.com/geerlingguy/top500-benchmark/issues/21#issuecomment-1792425949) | Arm | 296.93 Gflops | N/A | N/A |
| M2 MacBook Air (1x M2 @ 3.5 GHz, in Docker) | Arm | 104.68 Gflops | N/A | N/A |
You can [enter the Gflops in this tool](https://hpl-calculator.sourceforge.net/hpl-calculations.php) to see how it compares to historical top500 lists.
> **Note**: My current calculation for efficiency is based on three average measurements of power draw during the test—once at the beginning (first 10 seconds), once in the middle, and once at the end. At some point I hope to increase the accuracy of my power draw measurement over the full course of the benchmark. But for now, take my _efficiency_ ratings with a grain of salt. They aren't _wrong_, but they aren't 100% perfect either.
> **Note**: My current calculation for efficiency is based on average power draw over the course of the benchmark, based on either a Kill-A-Watt (pre-2024 tests) or a ThirdReality Smart Outlet monitor. The efficiency calculations may vary depending on the specific system under test.
### Other Listings
Expand Down

0 comments on commit 539ed06

Please sign in to comment.