Skip to content

PyTorch Implementation of "TSMixer: An All-MLP Architecture for Time Series Forecasting"

Notifications You must be signed in to change notification settings

giuliomattolin/tsmixer-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TSMixer

PyTorch Implementation of "TSMixer: An All-MLP Architecture for Time Series Forecasting"

Installation

Install the dependencies:

pip install -r requirements.txt

Data Preparation

We use pre-processed datasets provided in Autoformer.

mkdir dataset
cd dataset
# Download zip file from [Google Drive](https://drive.google.com/corp/drive/folders/1ZOYpTUa82_jCcxIdTmyr0LXQfvaM9vIy) and put it under dataset/
unzip all_six_datasets.zip
mv all_six_datasets/*/*.csv ./

Training Example

To reproduce results of 96 prediction length run the following bash scripts:

ETTm2

python main.py --data <path_to_csv_file> --seq_len 512 --pred_len 96 --learning_rate 0.001 --n_block 2 --dropout 0.9 --ff_dim 64

Weather

python main.py --data <path_to_csv_file> --seq_len 512 --pred_len 96 --learning_rate 0.0001 --n_block 4 --dropout 0.3 --ff_dim 32

Electricity

python main.py --data <path_to_csv_file> --seq_len 512 --pred_len 96 --learning_rate 0.0001 --n_block 4 --dropout 0.7 --ff_dim 64

Traffic

python main.py --data <path_to_csv_file> --seq_len 512 --pred_len 96 --learning_rate 0.0001 --n_block 8 --dropout 0.7 --ff_dim 64

About

PyTorch Implementation of "TSMixer: An All-MLP Architecture for Time Series Forecasting"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages