Skip to content

Commit

Permalink
updating urls and docker links
Browse files Browse the repository at this point in the history
  • Loading branch information
tsmbland committed Oct 23, 2023
1 parent 504ab8c commit b4f8758
Show file tree
Hide file tree
Showing 2 changed files with 9 additions and 9 deletions.
2 changes: 1 addition & 1 deletion Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -17,4 +17,4 @@ RUN echo "source activate $(head -1 /tmp/environment.yml | cut -d' ' -f2)" > ~/.
ENV PATH /opt/conda/envs/$(head -1 /tmp/environment.yml | cut -d' ' -f2)/bin:$PATH

# Download code
RUN git clone --depth 1 https://github.com/tsmbland/Bland-et-al-2023.git
RUN git clone --depth 1 https://github.com/goehringlab/2023-Bland-par2.git
16 changes: 8 additions & 8 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ Figure S9: [A-D][a6824]\
[Table S2][a4134]\
[Table S4][a1912]

Core code is found in _src_. Also relies heavily on the [par-segmentation](https://github.com/tsmbland/par-segmentation) and [discco](https://github.com/tsmbland/discco) packages.
Core code is found in _src_. Also relies heavily on the [par-segmentation](https://github.com/goehringlab/par-segmentation) and [discco](https://github.com/tsmbland/discco) packages.

## Data availability

Expand All @@ -79,7 +79,7 @@ The vast majority of the data is image data, found in the __Imaging__ folder. Th
- Raw images (one for each channel including DIC)
- An autofluorescence-corrected image (_af_corrected.tif_), generated from the raw images using [SAIBR](https://github.com/goehringlab/saibr_fiji_plugin)
- A preliminary manual ROI (_ROI_manual.txt_) generated using the [matplotlib-polyroi](https://github.com/tsmbland/matplotlib-polyroi) package
- An optimised ROI (_ROI_fit.txt_) generated using the [par-segmentation](https://github.com/tsmbland/par-segmentation) package
- An optimised ROI (_ROI_fit.txt_) generated using the [par-segmentation](https://github.com/goehringlab/par-segmentation) package
- An nd file containing metadata

Also includes the following datasets:
Expand All @@ -98,30 +98,30 @@ Also includes the following datasets:

If you don't have the raw data, run:

docker run -it --rm -p 8888:8888 tsmbland/par2-paper
docker run -it --rm -p 8888:8888 ghcr.io/goehringlab/2023-bland-par2:latest

If you have the raw data, run:

docker run -it --rm -p 8888:8888 -v /path/to/data:/RawData tsmbland/par2-paper
docker run -it --rm -p 8888:8888 -v /path/to/data:/RawData ghcr.io/goehringlab/2023-bland-par2:latest

replacing /path/to/data with the path to the raw data folder on your system

⁣3. Open Jupyter:

jupyter notebook --ip 0.0.0.0 --no-browser --allow-root Bland-et-al-2023
jupyter notebook --ip 0.0.0.0 --no-browser --allow-root 2023-Bland-par2

This will print a couple of URLs at the bottom for you to copy and paste into your browser to open up Jupyter (please try both)

⁣4. When finished, delete the Docker image:

docker image rm tsmbland/par2-paper
docker image rm ghcr.io/goehringlab/2023-bland-par2:latest

### Method 2 (Conda)

⁣1. Clone the repository:

git clone --depth 1 https://github.com/tsmbland/Bland-et-al-2023.git
cd Bland-et-al-2023
git clone --depth 1 https://github.com/goehringlab/2023-Bland-par2.git
cd 2023-Bland-par2

⁣2. Create conda environment:

Expand Down

0 comments on commit b4f8758

Please sign in to comment.