Skip to content

Commit

Permalink
fix any typo miswrite in the pdf generated with latex
Browse files Browse the repository at this point in the history
  • Loading branch information
gogo2464 committed Oct 20, 2024
1 parent b8f966a commit b68307c
Show file tree
Hide file tree
Showing 2 changed files with 17 additions and 25 deletions.
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -64,25 +64,21 @@

## II/ exclusive or

According to the boolean algebra about the exclusive logical or operation, $ \forall x [y = (x \oplus x) \implies (y = 0)] $. \\
Then as $ xlat \oplus xlat = 0 $, and as $ p \oplus 0 = p $, we know that the original password $p = xlat \oplus h $. \\ \\
According to the boolean algebra about the exclusive logical or operation, $ \forall x [y = (x \oplus x) \implies (y = 0)] $. $ \\ $
Then as $ xlat \oplus xlat = 0 $, and as $ p \oplus 0 = p $, we know that the original password $p = (xlat \oplus h)$. $ \\ $

## III/ rotating 4 first to 4 last bits

$ \forall x [(x \ggg y) \implies (x \lll y = x)] $. \\
$ \forall x [(x \ggg y) \implies (x \lll y = x)] $.

Then as $z = (x \ggg y) = (x \lll y) $, we know that the original password $ p = H(p) \lll 4 $.
$$
\\
\\
$$
Then as $z = (x \ggg y) = (x \lll y) $, we know that the original password $ p = H(p) \lll 4 $. $ \\ $

## IV/ unmasking different signatures (recurrent marks) in the hash
## IV/ unmasking different signatures (recurrent marks) in the password modification

In the previous chapter one `I/ substraction to reverse the addition`, we told we can reverse the previous addition. We still need to guess which addition/substraction has been done previously.
In the previous chapter one `I/ substraction to reverse the addition`, we told we can reverse the previous addition. We still need to guess which addition/substraction has been done previously. $ \\ $

As both addition values are made depending to: \\
if $ (p_l \land 0xf0 < 0xa0) \implies (p_l \land 0xf0 + 0x30) $ or else $ (p_l \land 0xf0 > 0xa0) \implies (p_l \land 0xf0 + 0x37) \\ $ \\
As both addition values are made depending to:
if $ (p_l \land 0xf0 < 0xa0) \implies (p_l \land 0xf0 + 0x30) $ or else $ (p_l \land 0xf0 > 0xa0) \implies (p_l \land 0xf0 + 0x37) \\ $
if $ (p_r \land 0x0f < 0x0a) \implies (p_r \land 0x0f + 0x30)$ or else $ (p_r \land 0x0f > 0xa0) \implies (p_r \land 0x0f + 0x37) \\ $

So if the out has the 4 four bits value so that:
Expand All @@ -99,26 +95,22 @@

first byte: \\
as $ 0xa0 < 0xf0 + 0x30 < y \\ $
-1: $ \forall y \in H(x), x \in { x | 0xa0 < x } \implies [y \in { y | 0x00 < y < 0xa7 }] \\$
-2: $ \forall y \in H(x), x \in { x | x < 0xa0 } \implies [y \in { y | 0xc0 < y }] \\$
-1: $ \forall y \in H(x)[(x \in \{ x | 0xa0 < x \}) \implies (y \in \{y | 0x00 < y < 0xa7\})] \\$
-2: $ \forall y \in H(x)[(x \in \{ x | x < 0xa0 \}) \implies (y \in \{ y | 0xc0 < y\})] \\$

second byte:
as $ 0xa0 < 0x0f + 0x30 < y \\ $
-1: $ \forall y \in H(x), x \in { x | x < 0x0a } \implies [y \in { y | 0x3a < y }] \\$
-2: $ \forall y \in H(x), x \in { x | 0x0a < x } \implies [y \in { y | y < 0x4a }] \\$
-1: $ \forall y \in H(x)[(x \in \{ x | x < 0x0a \}) \implies (y \in \{y | 0x3a < y\})] \\$
-2: $ \forall y \in H(x)[(x \in \{ x | 0x0a < x \}) \implies (y \in \{y | y < 0x4a\})] \\$


Then for both of any subnumber:
that $ \forall y = H(x), x \in \{ x | x \leq 0xa \} \implies y = x + 0x30 \\$
and that $ \forall y = H(x), x \in \{ x | x > 0xa \} \implies y = x + 0x37 \\$

$ \forall y = H(x), x \in { x | x \leq 0xa } \implies y = x + 0x30 $ $\\$

$ \forall y = H(x), x \in { x | x > 0xa } \implies y = x + 0x37 $ $\\$

It follows:

$ \forall y = H(x), y \in { y | 0 < y \leq 0x0a + 0x30 } \implies x = y - 0x30 $ then $ 0 < x < 0x0a $ $\\$

$ \forall y = H(x), y \in { y | 0 < y \leq 0x0a + 0x37 } \implies x = y - 0x30 $ then $ 0x0a \leq x $ $\\$
It follows: \\
that $ \forall y = H(x)[(y \in \{ y | 0 < y \leq 0x0a + 0x30 \}) \implies (x = y - 0x30)] $ then $ 0 < x < 0x0a $ \\
and that $ \forall y = H(x)[(y \in \{ y | 0 < y \leq 0x0a + 0x37 \}) \implies (x = y - 0x30)] $ then $ 0x0a \leq x $ $\\$

# V /communtativity:

Expand Down

0 comments on commit b68307c

Please sign in to comment.