-
Notifications
You must be signed in to change notification settings - Fork 390
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Reshape output tensor for average pooling 2d
PiperOrigin-RevId: 598397636
- Loading branch information
1 parent
edd71bc
commit 53695fe
Showing
4 changed files
with
210 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
// Copyright 2023 Google LLC | ||
// | ||
// This source code is licensed under the BSD-style license found in the | ||
// LICENSE file in the root directory of this source tree. | ||
|
||
#include <algorithm> | ||
#include <array> | ||
#include <cstddef> | ||
#include <cstdint> | ||
#include <limits> | ||
#include <memory> | ||
#include <random> | ||
#include <vector> | ||
|
||
#include <gtest/gtest.h> | ||
|
||
#include <xnnpack.h> | ||
#include <xnnpack/aligned-allocator.h> | ||
#include <xnnpack/common.h> | ||
#include <xnnpack/node-type.h> | ||
#include <xnnpack/operator-utils.h> | ||
#include <xnnpack/operator.h> | ||
#include <xnnpack/subgraph.h> | ||
|
||
TEST(AveragePooling2DTestF32, Reshape) | ||
{ | ||
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); | ||
|
||
xnn_subgraph_t subgraph = nullptr; | ||
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); | ||
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); | ||
|
||
std::vector<size_t> dims{2, 3, 4, 5}; | ||
uint32_t input_id = XNN_INVALID_NODE_ID; | ||
ASSERT_EQ( | ||
xnn_status_success, xnn_define_tensor_value( | ||
subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, | ||
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); | ||
ASSERT_NE(input_id, XNN_INVALID_NODE_ID); | ||
|
||
uint32_t output_id = XNN_INVALID_NODE_ID; | ||
ASSERT_EQ( | ||
xnn_status_success, xnn_define_tensor_value( | ||
subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 1, | ||
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); | ||
ASSERT_NE(output_id, XNN_INVALID_NODE_ID); | ||
|
||
const size_t pooling_height = 2; | ||
const size_t pooling_width = 2; | ||
const size_t stride_height = 2; | ||
const size_t stride_width = 2; | ||
const float output_min = -std::numeric_limits<float>::infinity(); | ||
const float output_max = std::numeric_limits<float>::infinity(); | ||
ASSERT_EQ(xnn_status_success, xnn_define_average_pooling_2d( | ||
subgraph, /*input_padding_top=*/0, /*input_padding_right=*/0, /*input_padding_bottom=*/0, /*input_padding_left=*/0, pooling_height, | ||
pooling_width, stride_height, stride_width, output_min, output_max, input_id, output_id, | ||
/*flags=*/0)); | ||
|
||
ASSERT_EQ(subgraph->num_nodes, 1); | ||
struct xnn_node* node = &subgraph->nodes[0]; | ||
ASSERT_EQ(node->type, xnn_node_type_average_pooling_2d); | ||
ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); | ||
ASSERT_EQ(node->num_inputs, 1); | ||
ASSERT_EQ(node->inputs[0], input_id); | ||
ASSERT_EQ(node->num_outputs, 1); | ||
ASSERT_EQ(node->outputs[0], output_id); | ||
ASSERT_EQ(node->flags, 0); | ||
|
||
xnn_runtime_t runtime = nullptr; | ||
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); | ||
ASSERT_NE(nullptr, runtime); | ||
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); | ||
|
||
ASSERT_EQ(node->reshape(&runtime->opdata[0], subgraph->values, subgraph->num_values, /*threadpool=*/nullptr), xnn_status_success); | ||
|
||
dims[0] = 7; | ||
dims[3] = 9; | ||
ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, 0, dims.size(), dims.data())); | ||
|
||
ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); | ||
const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; | ||
ASSERT_EQ(output_shape->dim[0], dims[0]); | ||
ASSERT_EQ(output_shape->dim[1], dims[1] - 2); | ||
ASSERT_EQ(output_shape->dim[2], dims[2] - 2); | ||
ASSERT_EQ(output_shape->dim[3], dims[3]); | ||
} | ||
|
||
TEST(AveragePooling2DTestF32, ReshapeWithPadding) | ||
{ | ||
ASSERT_EQ(xnn_status_success, xnn_initialize(/*allocator=*/nullptr)); | ||
|
||
xnn_subgraph_t subgraph = nullptr; | ||
ASSERT_EQ(xnn_status_success, xnn_create_subgraph(/*external_value_ids=*/2, /*flags=*/0, &subgraph)); | ||
std::unique_ptr<xnn_subgraph, decltype(&xnn_delete_subgraph)> auto_subgraph(subgraph, xnn_delete_subgraph); | ||
|
||
std::vector<size_t> dims{2, 3, 4, 5}; | ||
std::vector<size_t> output_dims{2, 3, 5, 5}; | ||
uint32_t input_id = XNN_INVALID_NODE_ID; | ||
ASSERT_EQ( | ||
xnn_status_success, xnn_define_tensor_value( | ||
subgraph, xnn_datatype_fp32, dims.size(), dims.data(), nullptr, 0, | ||
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_INPUT, &input_id)); | ||
ASSERT_NE(input_id, XNN_INVALID_NODE_ID); | ||
|
||
uint32_t output_id = XNN_INVALID_NODE_ID; | ||
ASSERT_EQ( | ||
xnn_status_success, xnn_define_tensor_value( | ||
subgraph, xnn_datatype_fp32, output_dims.size(), output_dims.data(), nullptr, 1, | ||
/*flags=*/XNN_VALUE_FLAG_EXTERNAL_OUTPUT, &output_id)); | ||
ASSERT_NE(output_id, XNN_INVALID_NODE_ID); | ||
|
||
const size_t pooling_height = 2; | ||
const size_t pooling_width = 2; | ||
const size_t stride_height = 2; | ||
const size_t stride_width = 2; | ||
const float output_min = -std::numeric_limits<float>::infinity(); | ||
const float output_max = std::numeric_limits<float>::infinity(); | ||
ASSERT_EQ(xnn_status_success, xnn_define_average_pooling_2d( | ||
subgraph, /*input_padding_top=*/3, /*input_padding_right=*/2, /*input_padding_bottom=*/1, /*input_padding_left=*/4, pooling_height, | ||
pooling_width, stride_height, stride_width, output_min, output_max, input_id, output_id, | ||
/*flags=*/0)); | ||
|
||
ASSERT_EQ(subgraph->num_nodes, 1); | ||
struct xnn_node* node = &subgraph->nodes[0]; | ||
ASSERT_EQ(node->type, xnn_node_type_average_pooling_2d); | ||
ASSERT_EQ(node->compute_type, xnn_compute_type_fp32); | ||
ASSERT_EQ(node->num_inputs, 1); | ||
ASSERT_EQ(node->inputs[0], input_id); | ||
ASSERT_EQ(node->num_outputs, 1); | ||
ASSERT_EQ(node->outputs[0], output_id); | ||
ASSERT_EQ(node->flags, 0); | ||
|
||
xnn_runtime_t runtime = nullptr; | ||
ASSERT_EQ(xnn_status_success, xnn_create_runtime_v3(subgraph, nullptr, nullptr, /*flags=*/0, &runtime)); | ||
ASSERT_NE(nullptr, runtime); | ||
std::unique_ptr<xnn_runtime, decltype(&xnn_delete_runtime)> auto_runtime(runtime, xnn_delete_runtime); | ||
|
||
ASSERT_EQ(node->reshape(&runtime->opdata[0], subgraph->values, subgraph->num_values, /*threadpool=*/nullptr), xnn_status_success); | ||
|
||
dims[0] = 2; | ||
dims[1] = 2; | ||
dims[2] = 8; | ||
dims[3] = 17; | ||
ASSERT_EQ(xnn_status_success, xnn_reshape_external_value(runtime, 0, dims.size(), dims.data())); | ||
|
||
ASSERT_EQ(node->reshape(&runtime->opdata[0], runtime->values, runtime->num_values, /*threadpool=*/nullptr), xnn_status_reallocation_required); | ||
const xnn_shape* output_shape = &runtime->values[node->outputs[0]].shape; | ||
ASSERT_EQ(output_shape->dim[0], dims[0]); | ||
ASSERT_EQ(output_shape->dim[1], 3); | ||
ASSERT_EQ(output_shape->dim[2], 7); | ||
ASSERT_EQ(output_shape->dim[3], dims[3]); | ||
} |