-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
2 changed files
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
161 changes: 161 additions & 0 deletions
161
init2winit/optimizer_lib/parabolic_approximation_line_search.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 The init2winit Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Implementation of Parabolic Approximation Line Search (PAL). | ||
Paper: https://arxiv.org/abs/1903.11991 | ||
Code: https://github.com/cogsys-tuebingen/PAL | ||
""" | ||
|
||
from typing import NamedTuple | ||
|
||
from init2winit.model_lib import model_utils | ||
|
||
import jax | ||
from jax import lax | ||
import jax.numpy as jnp | ||
import optax | ||
|
||
|
||
class ParabolicApproximationLineSearchState(NamedTuple): | ||
step: jnp.ndarray # shape=(), dtype=jnp.int32. | ||
base_state: NamedTuple # The state of the base optimizer. | ||
hyperparams: dict[str, jnp.ndarray] # The base optimizer's hyperparams. | ||
|
||
|
||
def parabolic_approximation_line_search( | ||
mu: float, | ||
alpha: float, | ||
s_max: float, | ||
start_step: int, | ||
stop_step: int, | ||
batch_axis_name: str, | ||
base_opt_init_fn, | ||
base_opt_update_fn, | ||
) -> optax.GradientTransformation: | ||
"""Implementation of Parabolic Approximation Line Search (PAL). | ||
Paper: https://arxiv.org/abs/1903.11991 | ||
Code: https://github.com/cogsys-tuebingen/PAL | ||
References: | ||
Mutschler and Zell, 2021: https://arxiv.org/abs/1903.11991 | ||
Args: | ||
mu: The measuring step size to use when computing the loss as the projected | ||
point. | ||
alpha: The update step adaptation used when computing the update. | ||
s_max: The upper bound for the maximum step size that we can take. | ||
start_step: The step to start using PAL at. | ||
stop_step: The step to stop using PAL at. | ||
batch_axis_name: the name of the axis to pmap over. Used to run a pmean | ||
before applying the optimizer update. | ||
base_opt_init_fn: The initialization function for the base optimizer used to | ||
generate updates given the total gradient. | ||
base_opt_update_fn: The update function for the base optimizer used to | ||
generate updates given the total gradient. | ||
Returns: | ||
The corresponding `GradientTransformation`. | ||
""" | ||
|
||
def init_fn(params): | ||
base_state = base_opt_init_fn(params) | ||
return ParabolicApproximationLineSearchState( | ||
step=jnp.zeros([], dtype=jnp.int32), | ||
base_state=base_state, | ||
hyperparams=base_state.hyperparams) | ||
|
||
def update_fn(updates, state, cost_fn_params_tuple): | ||
(cost_fn, params) = cost_fn_params_tuple | ||
|
||
def pal_update(updates, state, params): | ||
|
||
def loss_fn(params): | ||
loss, _ = cost_fn(params) | ||
return lax.pmean(loss, axis_name=batch_axis_name) | ||
|
||
loss = loss_fn(params) | ||
|
||
grad = updates | ||
updates, state = base_opt_update_fn(updates, state, params) | ||
|
||
updates_norm = jnp.sqrt(model_utils.l2_regularization(updates, 0)) | ||
updates = jax.tree_util.tree_map(lambda u: u / updates_norm, updates) | ||
new_params = optax.apply_updates( | ||
params, jax.tree_util.tree_map(lambda u: mu * u, updates)) | ||
new_loss = loss_fn(new_params) | ||
|
||
b = jax.tree_util.tree_reduce( | ||
lambda a, b: a + b, | ||
jax.tree_util.tree_map(lambda g, u: jnp.sum(g * u), grad, updates)) | ||
a = (new_loss - loss - b * mu) / (mu**2) | ||
|
||
def line_search_update(mu, alpha, a, b): | ||
del mu | ||
return (-1.0 * alpha * b) / (2.0 * a) | ||
|
||
def mu_update(mu, alpha, a, b): | ||
del alpha, a, b | ||
return mu | ||
|
||
def noop_update(mu, alpha, a, b): | ||
del mu, alpha, a, b | ||
return 0.0 | ||
|
||
s_upd_1 = lax.cond( | ||
jnp.logical_and(jnp.greater(a, 0), jnp.less(b, 0)), | ||
line_search_update, noop_update, mu, alpha, a, b) | ||
|
||
s_upd_2 = lax.cond( | ||
jnp.logical_and(jnp.less_equal(a, 0), jnp.less(b, 0)), mu_update, | ||
noop_update, mu, alpha, a, b) | ||
|
||
s_upd = jnp.maximum(s_upd_1, s_upd_2) | ||
s_upd = lax.cond(jnp.greater(s_upd, s_max), lambda: s_max, lambda: s_upd) | ||
state.hyperparams['learning_rate'] = s_upd | ||
|
||
def scale_update(updates, lr): | ||
return jax.tree_util.tree_map(lambda u: u * lr, updates) | ||
|
||
def scale_by_zeros_update(updates, lr): | ||
del lr | ||
return jax.tree_util.tree_map(jnp.zeros_like, updates) | ||
|
||
updates = lax.cond( | ||
jnp.greater(s_upd, 0.0), scale_update, scale_by_zeros_update, updates, | ||
s_upd) | ||
|
||
return updates, state | ||
|
||
def base_optimizer_update(updates, state, params): | ||
return base_opt_update_fn(updates, state, params) | ||
|
||
updates, base_state = lax.cond( | ||
jnp.logical_and( | ||
jnp.greater_equal(state.step, start_step), | ||
jnp.less_equal(state.step, stop_step)), | ||
pal_update, | ||
base_optimizer_update, | ||
updates, | ||
state.base_state, | ||
params) | ||
|
||
step = state.step + jnp.ones([], dtype=jnp.int32) | ||
state = ParabolicApproximationLineSearchState( | ||
step=step, base_state=base_state, hyperparams=base_state.hyperparams) | ||
|
||
return updates, state | ||
|
||
return optax.GradientTransformation(init_fn, update_fn) |