Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CelebA dataset #1174

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions experimental/shoshin/configs/celeb_a_resnet_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,9 @@ def get_config() -> ml_collections.ConfigDict:
"""Get mlp config."""
config = base_config.get_config()

config.data.subgroup_ids = ('Blond_Hair',) # ('Blond_Hair')
config.data.subgroup_proportions = (0.01,) # (0.04, 0.012)

data = config.data
data.name = 'celeb_a'
data.num_classes = 2
Expand Down
260 changes: 241 additions & 19 deletions experimental/shoshin/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@
import os
from typing import Any, Dict, Iterator, Optional, Tuple, List, Union

import pandas as pd
import tensorflow as tf
import tensorflow_datasets as tfds

Expand Down Expand Up @@ -470,7 +471,7 @@ def get_waterbirds_dataset(
to their respective combined datasets.
"""
split_size_in_pct = int(100 * initial_sample_proportion / num_splits)
reduced_datset_sz = int(100 * initial_sample_proportion)
reduced_dataset_sz = int(100 * initial_sample_proportion)
builder_kwargs = {
'subgroup_ids': subgroup_ids,
'subgroup_proportions': subgroup_proportions
Expand All @@ -479,7 +480,7 @@ def get_waterbirds_dataset(
'waterbirds_dataset',
split=[
f'validation[{k}%:{k+split_size_in_pct}%]'
for k in range(0, reduced_datset_sz, split_size_in_pct)
for k in range(0, reduced_dataset_sz, split_size_in_pct)
],
data_dir=DATA_DIR,
builder_kwargs=builder_kwargs,
Expand All @@ -490,7 +491,7 @@ def get_waterbirds_dataset(
'waterbirds_dataset',
split=[
f'train[{k}%:{k+split_size_in_pct}%]'
for k in range(0, reduced_datset_sz, split_size_in_pct)
for k in range(0, reduced_dataset_sz, split_size_in_pct)
],
data_dir=DATA_DIR,
builder_kwargs=builder_kwargs,
Expand Down Expand Up @@ -528,8 +529,233 @@ def get_waterbirds_dataset(
train_sample_ds=train_sample,
eval_ds=eval_datasets)

IMG_ALIGNED_DATA = ('https://drive.google.com/uc?export=download&'
'id=0B7EVK8r0v71pZjFTYXZWM3FlRnM')
EVAL_LIST = ('https://drive.google.com/uc?export=download&'
'id=0B7EVK8r0v71pY0NSMzRuSXJEVkk')
# Landmark coordinates: left_eye, right_eye etc.
LANDMARKS_DATA = ('https://drive.google.com/uc?export=download&'
'id=0B7EVK8r0v71pd0FJY3Blby1HUTQ')

# Attributes in the image (Eyeglasses, Mustache etc).
ATTR_DATA = ('https://drive.google.com/uc?export=download&'
'id=0B7EVK8r0v71pblRyaVFSWGxPY0U')

LANDMARK_HEADINGS = ('lefteye_x lefteye_y righteye_x righteye_y '
'nose_x nose_y leftmouth_x leftmouth_y rightmouth_x '
'rightmouth_y').split()
ATTR_HEADINGS = (
'5_o_Clock_Shadow Arched_Eyebrows Attractive Bags_Under_Eyes Bald Bangs '
'Big_Lips Big_Nose Black_Hair Blond_Hair Blurry Brown_Hair '
'Bushy_Eyebrows Chubby Double_Chin Eyeglasses Goatee Gray_Hair '
'Heavy_Makeup High_Cheekbones Male Mouth_Slightly_Open Mustache '
'Narrow_Eyes No_Beard Oval_Face Pale_Skin Pointy_Nose Receding_Hairline '
'Rosy_Cheeks Sideburns Smiling Straight_Hair Wavy_Hair Wearing_Earrings '
'Wearing_Hat Wearing_Lipstick Wearing_Necklace Wearing_Necktie Young'
).split()

_CITATION = """\
@inproceedings{conf/iccv/LiuLWT15,
added-at = {2018-10-09T00:00:00.000+0200},
author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
biburl = {https://www.bibsonomy.org/bibtex/250e4959be61db325d2f02c1d8cd7bfbb/dblp},
booktitle = {ICCV},
crossref = {conf/iccv/2015},
ee = {http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.425},
interhash = {3f735aaa11957e73914bbe2ca9d5e702},
intrahash = {50e4959be61db325d2f02c1d8cd7bfbb},
isbn = {978-1-4673-8391-2},
keywords = {dblp},
pages = {3730-3738},
publisher = {IEEE Computer Society},
timestamp = {2018-10-11T11:43:28.000+0200},
title = {Deep Learning Face Attributes in the Wild.},
url = {http://dblp.uni-trier.de/db/conf/iccv/iccv2015.html#LiuLWT15},
year = 2015
}
"""

_DESCRIPTION = """\
CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset\
with more than 200K celebrity images, each with 40 attribute annotations. The \
images in this dataset cover large pose variations and background clutter. \
CelebA has large diversities, large quantities, and rich annotations, including\
- 10,177 number of identities,
- 202,599 number of face images, and
- 5 landmark locations, 40 binary attributes annotations per image.
The dataset can be employed as the training and test sets for the following \
computer vision tasks: face attribute recognition, face detection, and landmark\
(or facial part) localization.
Note: CelebA dataset may contain potential bias. The fairness indicators
[example](https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/Fairness_Indicators_TFCO_CelebA_Case_Study)
goes into detail about several considerations to keep in mind while using the
CelebA dataset.
"""


class LocalCelebADataset(tfds.core.GeneratorBasedBuilder):
"""CelebA dataset. Aligned and cropped. With metadata."""

VERSION = tfds.core.Version('2.0.1')
SUPPORTED_VERSIONS = [
tfds.core.Version('2.0.0'),
]
RELEASE_NOTES = {
'2.0.1': 'New split API (https://tensorflow.org/datasets/splits)',
}

def __init__(self,
subgroup_ids: List[str],
subgroup_proportions: Optional[List[float]] = None,
label_attr: Optional[str] = 'Male',
**kwargs):
super(LocalCelebADataset, self).__init__(**kwargs)
self.subgroup_ids = subgroup_ids
self.label_attr = label_attr
if subgroup_proportions:
self.subgroup_proportions = subgroup_proportions
else:
self.subgroup_proportions = [1.] * len(subgroup_ids)

def _info(self):
return tfds.core.DatasetInfo(
builder=self,
features=tfds.features.FeaturesDict({
'example_id':
tfds.features.Text(),
'subgroup_id':
tfds.features.Text(),
'subgroup_label':
tfds.features.ClassLabel(num_classes=2),
'feature':
tfds.features.Image(
shape=(218, 178, 3), encoding_format='jpeg'),
'label':
tfds.features.ClassLabel(num_classes=2),
'image_filename':
tfds.features.Text(),
}),
supervised_keys=('feature', 'label', 'example_id'),
)

def _split_generators(self, dl_manager):
downloaded_dirs = dl_manager.download({
'img_align_celeba': IMG_ALIGNED_DATA,
'list_eval_partition': EVAL_LIST,
'list_attr_celeba': ATTR_DATA,
'landmarks_celeba': LANDMARKS_DATA,
})

# Load all images in memory (~1 GiB)
# Use split to convert: `img_align_celeba/000005.jpg` -> `000005.jpg`
all_images = {
os.path.split(k)[-1]: img for k, img in dl_manager.iter_archive(
downloaded_dirs['img_align_celeba'])
}
return [
tfds.core.SplitGenerator(
name=tfds.Split.TRAIN,
gen_kwargs={
'file_id': 0,
'downloaded_dirs': downloaded_dirs,
'downloaded_images': all_images,
'is_training': True,
}),
tfds.core.SplitGenerator(
name=tfds.Split.VALIDATION,
gen_kwargs={
'file_id': 1,
'downloaded_dirs': downloaded_dirs,
'downloaded_images': all_images,
'is_training': False,
}),
tfds.core.SplitGenerator(
name=tfds.Split.TEST,
gen_kwargs={
'file_id': 2,
'downloaded_dirs': downloaded_dirs,
'downloaded_images': all_images,
'is_training': False,
})
]

def _process_celeba_config_file(self, file_path):
"""Unpack the celeba config file.

The file starts with the number of lines, and a header.
Afterwards, there is a configuration for each file: one per line.
Args:
file_path: Path to the file with the configuration.
Returns:
keys: names of the attributes
values: map from the file name to the list of attribute values for
this file.
"""

with tf.io.gfile.GFile(file_path) as f:
data_raw = f.read()
lines = data_raw.split('\n')

keys = lines[1].strip().split()
values = {}
# Go over each line (skip the last one, as it is empty).
for line in lines[2:-1]:
row_values = line.strip().split()
# Each row start with the 'file_name' and then space-separated values.
values[row_values[0]] = [int(v) for v in row_values[1:]]
return keys, values

def _generate_examples(self, file_id, downloaded_dirs, downloaded_images,
is_training):
"""Yields examples."""

attr_path = downloaded_dirs['list_attr_celeba']

@register_dataset('celeb_a')
attributes = self._process_celeba_config_file(attr_path)
dataset = pd.DataFrame.from_dict(
attributes[1], orient='index', columns=attributes[0])

if is_training:
dataset_size = 300000
sampled_datasets = []
remaining_proportion = 1.
remaining_dataset = dataset.copy()
for idx, subgroup_id in enumerate(self.subgroup_ids):

subgroup_dataset = dataset[dataset[subgroup_id] == 1]
subgroup_sample_size = int(dataset_size *
self.subgroup_proportions[idx])
subgroup_dataset = subgroup_dataset.sample(min(len(subgroup_dataset),
subgroup_sample_size))
sampled_datasets.append(subgroup_dataset)
remaining_proportion -= self.subgroup_proportions[idx]
remaining_dataset = remaining_dataset[remaining_dataset[subgroup_id] ==
-1]

remaining_sample_size = int(dataset_size * remaining_proportion)
remaining_dataset = remaining_dataset.sample(min(len(remaining_dataset),
remaining_sample_size))
sampled_datasets.append(remaining_dataset)

dataset = pd.concat(sampled_datasets)
dataset = dataset.sample(min(len(dataset), dataset_size))
for file_name in dataset.index:
subgroup_id = self.subgroup_ids[0] if dataset.loc[file_name][
self.subgroup_ids[0]] == 1 else 'Not_' + self.subgroup_ids[0]
subgroup_label = 1 if subgroup_id in self.subgroup_ids else 0
label = 1 if dataset.loc[file_name][self.label_attr] == 1 else 0
record = {
'example_id': file_name,
'subgroup_id': subgroup_id,
'subgroup_label': subgroup_label,
'feature': downloaded_images[file_name],
'label': label,
'image_filename': file_name
}
yield file_name, record


@register_dataset('local_celeb_a')
def get_celeba_dataset(
num_splits: int, initial_sample_proportion: float,
subgroup_ids: List[str], subgroup_proportions: List[float],
Expand All @@ -549,47 +775,44 @@ def get_celeba_dataset(
combined training dataset, and a dictionary mapping evaluation dataset names
to their respective combined datasets.
"""
del subgroup_proportions, subgroup_ids
read_config = tfds.ReadConfig()
read_config.add_tfds_id = True # Set `True` to return the 'tfds_id' key

split_size_in_pct = int(100 * initial_sample_proportion / num_splits)
reduced_dataset_sz = int(100 * initial_sample_proportion)
builder_kwargs = {
'subgroup_ids': subgroup_ids,
'subgroup_proportions': subgroup_proportions
}
train_splits = tfds.load(
'celeb_a',
'local_celeb_a_dataset',
read_config=read_config,
split=[
f'train[:{k}%]+train[{k+split_size_in_pct}%:]'
for k in range(0, reduced_dataset_sz, split_size_in_pct)
],
builder_kwargs=builder_kwargs,
data_dir=DATA_DIR,
try_gcs=False,
as_supervised=True
)
val_splits = tfds.load(
'celeb_a',
'local_celeb_a_dataset',
read_config=read_config,
split=[
f'validation[{k}%:{k+split_size_in_pct}%]'
for k in range(0, reduced_dataset_sz, split_size_in_pct)
],
builder_kwargs=builder_kwargs,
data_dir=DATA_DIR,
try_gcs=False,
as_supervised=True
)
train_sample = tfds.load(
'celeb_a',
split='train_sample',
data_dir=DATA_DIR,
try_gcs=False,
as_supervised=True,
with_info=False)

test_ds = tfds.load(
'celeb_a',
'local_celeb_a_dataset',
split='test',
builder_kwargs=builder_kwargs,
data_dir=DATA_DIR,
try_gcs=False,
as_supervised=True,
with_info=False)

train_ds = gather_data_splits(list(range(num_splits)), train_splits)
Expand All @@ -602,5 +825,4 @@ def get_celeba_dataset(
train_splits,
val_splits,
train_ds,
train_sample_ds=train_sample,
eval_ds=eval_datasets)