Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Square cells and merging numba/python versions of nbody/init.py #5

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions nbody/numba/nbody/barnes_hut_array/numba_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ def buildTree(center0, box_size0, child, cell_center, cell_radius, particles):
nbodies = particles.shape[0]
for ip in range(nbodies):
center = center0.copy()
box_size = box_size0.copy()
box_size = box_size0
x, y = particles[ip, :2]
cell = 0

Expand Down Expand Up @@ -44,15 +44,15 @@ def buildTree(center0, box_size0, child, cell_center, cell_radius, particles):
ncell += 1
child[childIndex] = nbodies + ncell
center[:] = cell_center[cell]
box_size[:] = .5*cell_radius[cell]
box_size = .5*cell_radius[cell]
if (oldchildPath&1):
center[0] += box_size[0]
center[0] += box_size
else:
center[0] -= box_size[0]
center[0] -= box_size
if ((oldchildPath>>1)&1):
center[1] += box_size[1]
center[1] += box_size
else:
center[1] -= box_size[1]
center[1] -= box_size

oldchildPath = 0
if particles[npart, 0] > center[0]:
Expand Down Expand Up @@ -110,9 +110,9 @@ def buildTree(center0, box_size0, child, cell_center, cell_radius, particles):
# acc += np.array([F * dx, F * dy])
# else:
# dist = np.sqrt(dx**2 + dy**2)
# #print(dist, localNode[depth], self.cell_radius[child - self.nbodies][0],
# # self.cell_radius[child - self.nbodies][0]/dist)
# if dist != 0 and cell_radius[child - nbodies][0]/dist <.5:
# #print(dist, localNode[depth], self.cell_radius[child - self.nbodies],
# # self.cell_radius[child - self.nbodies]/dist)
# if dist != 0 and cell_radius[child - nbodies]/dist <.5:
# #print('dist', dx, dy)
# F = gamma_si*mass[child]/(dist*dist*dist)
# acc += np.array([F * dx, F * dy])
Expand Down Expand Up @@ -146,7 +146,7 @@ def computeForce(nbodies, child_array, center_of_mass, mass, cell_radius, p):
dx = center_of_mass[child, 0] - pos[0]
dy = center_of_mass[child, 1] - pos[1]
dist = np.sqrt(dx**2 + dy**2)
if dist != 0 and cell_radius[child - nbodies][0]/dist <.5:
if dist != 0 and cell_radius[child - nbodies]/dist <.5:
Fx, Fy = force(pos, center_of_mass[child], mass[child])
acc[0] += Fx
acc[1] += Fy
Expand Down
6 changes: 3 additions & 3 deletions nbody/numba/nbody/barnes_hut_array/quadTree.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,12 +9,12 @@ def __init__(self, bmin, bmax, size):
self.bmin = np.asarray(bmin)
self.bmax = np.asarray(bmax)
self.center = .5*(self.bmin + self.bmax)
self.box_size = (self.bmax - self.bmin)
self.box_size = (self.bmax - self.bmin).max()
self.ncell = 0
self.cell_center = np.zeros((2*size+1, 2))
self.cell_radius = np.zeros((2*size+1, 2))
self.cell_radius = np.zeros(2*size+1)
self.cell_center[0] = self.center
self.cell_radius[0] = self.box_size
self.cell_radius[0] = 0.5*self.box_size

def buildTree(self, particles):
self.ncell = numba_functions.buildTree(self.center, self.box_size, self.child, self.cell_center, self.cell_radius, particles)
Expand Down
20 changes: 10 additions & 10 deletions nbody/python/nbody/barnes_hut_array/quadTree.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,17 @@ def __init__(self, bmin, bmax, size):
self.bmin = np.asarray(bmin)
self.bmax = np.asarray(bmax)
self.center = .5*(self.bmin + self.bmax)
self.box_size = (self.bmax - self.bmin)
self.box_size = (self.bmax - self.bmin).max()
self.ncell = 0
self.cell_center = np.zeros((2*size+1, 2))
self.cell_radius = np.zeros((2*size+1, 2))
self.cell_radius = np.zeros(2*size+1)
self.cell_center[0] = self.center
self.cell_radius[0] = self.box_size
self.cell_radius[0] = 0.5*self.box_size

def buildTree(self, particles):
for ip, p in enumerate(particles):
center = self.center.copy()
box_size = self.box_size.copy()
box_size = self.box_size
x, y = p[:2]
cell = 0

Expand Down Expand Up @@ -55,13 +55,13 @@ def buildTree(self, particles):
center[:] = self.cell_center[cell]
box_size = .5*self.cell_radius[cell]
if (oldchildPath&1):
center[0] += box_size[0]
center[0] += box_size
else:
center[0] -= box_size[0]
center[0] -= box_size
if ((oldchildPath>>1)&1):
center[1] += box_size[1]
center[1] += box_size
else:
center[1] -= box_size[1]
center[1] -= box_size

oldchildPath = 0
if particles[npart][0] > center[0]:
Expand Down Expand Up @@ -125,7 +125,7 @@ def computeForce(self, p):
dx = self.center_of_mass[child, 0] - pos[0]
dy = self.center_of_mass[child, 1] - pos[1]
dist = np.sqrt(dx**2 + dy**2)
if dist != 0 and self.cell_radius[child - self.nbodies][0]/dist <.5:
if dist != 0 and self.cell_radius[child - self.nbodies]/dist <.5:
F = force(pos, self.center_of_mass[child], self.mass[child])
acc += F
else:
Expand All @@ -146,4 +146,4 @@ def __str__(self):
s += 2*indent + 'particules: {p}\n'.format(p=cellElements[np.logical_and(0<=cellElements, cellElements<self.nbodies)])
s += 2*indent + 'cells: {c}\n'.format(c=cellElements[cellElements>=self.nbodies]-self.nbodies)

return s
return s
10 changes: 5 additions & 5 deletions nbody/python/nbody/init.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import numpy as np
from .physics import gamma_1
from .physics import gamma_1, gamma_si

def init_solar_system():
bodies = np.array([[ 0, 0, 0, 0], #sun
Expand Down Expand Up @@ -33,7 +33,7 @@ def getOrbitalVelocity(xb, yb, mb, xs, ys):
dist = np.sqrt(r[0] * r[0] + r[1] * r[1])

# Based on the distance from the sun calculate the velocity needed to maintain a circular orbit
v = np.sqrt(gamma_1 * mb / dist)
v = np.sqrt(gamma_si * mb / dist)

# Calculate a suitable vector perpendicular to r for the velocity of the tracer
vxs = ( r[1] / dist) * v
Expand Down Expand Up @@ -65,7 +65,7 @@ def init_collisions(blackHole):

nstars = b['stars']
rad = b['radstars']
r = 0.1 + .8 * (rad * np.random.rand(nstars))
r = 0.3 + .8 * (rad * np.random.rand(nstars))
a = 2*np.pi*np.random.rand(nstars)
tmp_mass = 0.03 + 20*np.random.rand(nstars)
x = b['coord'][0] + r*np.sin(a)
Expand All @@ -75,8 +75,8 @@ def init_collisions(blackHole):

particles[ind:ind+nstars, 0] = x
particles[ind:ind+nstars, 1] = y
particles[ind:ind+nstars, 2] = 1e2 * (vx + vxb)
particles[ind:ind+nstars, 3] = 1e2 * (vy + vyb)
particles[ind:ind+nstars, 2] = vx + vxb
particles[ind:ind+nstars, 3] = vy + vyb
mass[ind:ind+nstars] = tmp_mass
ind += nstars

Expand Down