-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 15d8479
Showing
105 changed files
with
53,199 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
Package: sufrep | ||
Type: Package | ||
Title: Sufficient representations for categorical variables | ||
Version: 0.1.0 | ||
BugReports: https://github.com/grf-labs/sufrep/issues | ||
Author: Jonathan Johannemann [aut, cre], | ||
Vitor Hadad [aut, cre], | ||
Stefan Wager [aut], | ||
Susan Athey [aut] | ||
Maintainer: Vitor Hadad <[email protected]> | ||
Description: Collection of simple methods to represent categorical variables for | ||
input to statistical software. This package is currently in beta, and we | ||
expect to make continual improvements to its performance and usability. | ||
PRs and issue reports are very much welcome. | ||
Depends: | ||
R (>= 3.3.0) | ||
glmnet (>= 2.0.16) | ||
sparsepca (>= 0.1.12) | ||
License: GPL-3 | ||
Suggests: | ||
grf | ||
dplyr | ||
xgboost | ||
grf | ||
Encoding: UTF-8 | ||
LazyData: true | ||
RoxygenNote: 6.1.1 | ||
URL: https://github.com/grf-labs/sufrep |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# Generated by roxygen2: do not edit by hand | ||
|
||
export(make_encoder) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
one_hot_encode <- function(num_categ) { | ||
CM <- diag(num_categ)[, 1:(num_categ - 1)] | ||
return(CM) | ||
} | ||
|
||
helmert_encode <- function(num_categ) { | ||
CM <- stats::contr.helmert(num_categ) | ||
return(CM) | ||
} | ||
|
||
deviation_encode <- function(num_categ) { | ||
CM <- stats::contr.sum(num_categ) | ||
return(CM) | ||
} | ||
|
||
repeated_effect_encode <- function(num_categ) { | ||
TH <- matrix(0, nrow = num_categ, ncol = num_categ) | ||
TH <- matrix((num_categ - col(TH)) / num_categ, nrow = num_categ, ncol = num_categ) | ||
TH[lower.tri(TH)] <- 0 | ||
BH <- matrix(-col(TH) / num_categ, nrow = num_categ, ncol = num_categ) | ||
BH[upper.tri(BH)] <- 0 | ||
diag(BH) <- 0 | ||
CM <- TH + BH | ||
CM <- CM[, 1:(num_categ - 1)] | ||
return(CM) | ||
} | ||
|
||
difference_encode <- function(num_categ) { | ||
CM <- matrix(0, nrow = num_categ, ncol = num_categ) | ||
CM <- matrix(-1 / (col(CM) + 1), nrow = num_categ, ncol = num_categ) | ||
CM[lower.tri(CM)] <- 0 | ||
CM <- CM[, 1:(num_categ - 1)] | ||
CM[row(CM) == (col(CM) + 1)] <- -apply(CM, 2, sum) | ||
return(CM) | ||
} | ||
|
||
simple_effect_encode <- function(num_categ) { | ||
CM <- matrix(-1 / num_categ, nrow = num_categ, ncol = num_categ) | ||
CM <- CM + diag(num_categ) | ||
CM <- CM[, 1:(num_categ - 1)] | ||
return(CM) | ||
} | ||
|
||
fisher_encode <- function(G, Y) { | ||
CM <- aggregate(Y, list(G), mean) | ||
colnames(CM) <- c("label", "X1") | ||
CM$X1 <- rank(CM$X1) | ||
ordering <- data.frame(unique(G)) | ||
colnames(ordering) <- "ORD" | ||
CM <- CM[order(ordering$ORD), ] | ||
CM <- as.matrix(CM$X1) | ||
return(CM) | ||
} | ||
|
||
|
||
means_encode <- function(X, G) { | ||
p <- dim(X)[2] | ||
CM <- as.matrix(aggregate(X, list(G), mean)[, 2:(p + 1)]) | ||
colnames(CM) <- NULL | ||
return(CM) | ||
} | ||
|
||
|
||
low_rank_encode <- function(X, G, num_components) { | ||
if (num_components > dim(X)[2]) { | ||
stop("Argument num_components cannot be larger than number of X columns.") | ||
} | ||
CM <- means_encode(X, G) | ||
decomp <- svd(CM) | ||
CM <- as.matrix(decomp$u[, 1:num_components]) | ||
return(CM) | ||
} | ||
|
||
|
||
sparse_low_rank_encode <- function(X, G, num_components) { | ||
if (num_components > dim(X)[2]) { | ||
stop("Argument num_components cannot be larger than number of X columns.") | ||
} | ||
CM <- means_encode(X, G) | ||
decomp <- sparsepca::spca(CM, verbose = FALSE) | ||
U <- decomp$loadings[, 1:num_components] | ||
CM <- CM %*% U | ||
return(CM) | ||
} | ||
|
||
|
||
permutation_encode <- function(num_categ, num_perms) { | ||
if (is.null(num_perms)) { | ||
stop("When 'method' is 'multi_permutation', argument 'num_permutations' must not be null.") | ||
} | ||
CM <- replicate(num_perms, sample(num_categ, size = num_categ, replace = FALSE)) | ||
return(CM) | ||
} | ||
|
||
|
||
mnl_encode <- function(X, G) { | ||
X <- as.matrix(X) | ||
fit <- glmnet::glmnet(x = X, y = G, family = "multinomial") | ||
coefs <- coef(fit, s = min(fit$lambda, na.rm = TRUE)) | ||
coef_mat <- as.data.frame(lapply(coefs, as.matrix)) | ||
CM <- t(as.matrix(coef_mat)) | ||
rownames(CM) <- NULL | ||
colnames(CM) <- NULL | ||
return(CM) | ||
} | ||
|
||
|
||
validate_X <- function(X) { | ||
if (length(dim(X)) != 2) { | ||
stop("Argument X must be two-dimensional.") | ||
} | ||
non_numeric_cols <- rep(F, dim(X)[2]) | ||
for (i in seq_along(dim(X)[2])) { | ||
non_numeric_cols[i] <- !is.numeric(X[, i]) | ||
} | ||
if (any(non_numeric_cols)) { | ||
stop(paste0( | ||
"Argument X contains columns that are not numeric. ", | ||
"They are numbered ", which(non_numeric_cols) | ||
)) | ||
} | ||
} | ||
|
||
|
||
validate_G <- function(G) { | ||
if (!is.factor(G)) { | ||
stop("Argument G must be of factor type.") | ||
} | ||
} | ||
|
||
|
||
validate_Y <- function(method, Y) { | ||
if ((method == "fisher") && is.null(Y)) { | ||
stop("Method 'fisher' requires non-null Y.") | ||
} | ||
} | ||
|
||
|
||
validate_levels <- function(G, input_levels) { | ||
new_levels <- setdiff(levels(G), input_levels) | ||
if (length(new_levels) > 0) { | ||
stop(paste0("Training data did not contain levels: ", new_levels)) | ||
} | ||
} | ||
|
||
|
||
# Compute representations for categorical (factor) variables | ||
# | ||
#' @param method The encoding method. | ||
#' Must be one of: "one_hot", "helmert", "deviation", | ||
#' "repeated_effect", "difference", "simple_effect", | ||
#' "fisher", "means", "low_rank", "sparse_low_rank", | ||
#' "permutation", "multi_permutation", "mnl". | ||
#' See REFERENCE.md for an explanation of each method. | ||
#' @param X A data.frame or matrix containing only numeric columns. | ||
#' @param G A single vector of factor type containing the categories. | ||
#' @param prefix A prefix to be prepended to encoding column names. | ||
#' @param Y A single vector of numerical type containing the outcome variable. | ||
#' Used only in method "fisher", ignored otherwise. | ||
#' @param num_components If method is sparse_low_rank, this is the number | ||
#' of sparse principal components. If method is low_rank, | ||
#' then this corresponds to the number of singular vectors. | ||
#' For all other methods, this argument is ignored. | ||
#' @param num_permutations Number of columns to be added by the 'multi_permutation' | ||
#' method. Ignored by other methods. | ||
#' @param num_folds Number of cross-validation folds used by mnl method. Ignored by | ||
#' other methods. | ||
#' @examples | ||
#' \dontrun{ | ||
#' # Fake data | ||
#' n <- 100 | ||
#' p <- 10 | ||
#' G <- factor(sample(c("a", "b", "c"), replace = T, size = n)) | ||
#' X <- apply(matrix(runif(n * p), n, p)) | ||
#' | ||
#' # Create the encoding matrix with the means method | ||
#' enc <- make_encoder("means", X = X, G = G) | ||
#' | ||
#' # Compute the actual encoded matrix | ||
#' X_enc <- enc(X, G) | ||
#' } | ||
#' | ||
#' @return A matrix or data.frame that concatenates the original X input columns with | ||
#' the encoding columns. | ||
#' | ||
#' @references Jonathan Johannemann, Vitor Hadad, Susan Athey, and Stefan Wager. | ||
#' "Sufficient Representations of Categorical Variables". 2019. | ||
make_encoder <- function(method, X, G, | ||
prefix = "ENC", | ||
Y = NULL, | ||
num_components = dim(X)[2], | ||
num_permutations = 1, | ||
num_folds = 3) { | ||
|
||
# Type validation | ||
validate_X(X) | ||
validate_G(G) | ||
validate_Y(method, Y) | ||
input_levels <- levels(G) | ||
|
||
# Compute encoding | ||
num_categ <- length(levels(G)) | ||
CM <- switch(method, | ||
one_hot = one_hot_encode(num_categ), | ||
helmert = helmert_encode(num_categ), | ||
deviation = deviation_encode(num_categ), | ||
repeated_effect = repeated_effect_encode(num_categ), | ||
difference = difference_encode(num_categ), | ||
simple_effect = simple_effect_encode(num_categ), | ||
fisher = fisher_encode(G, Y), | ||
means = means_encode(X, G), | ||
low_rank = low_rank_encode(X, G, num_components), | ||
sparse_low_rank = sparse_low_rank_encode(X, G, num_components), | ||
permutation = permutation_encode(num_categ, 1), | ||
multi_permutation = permutation_encode(num_categ, num_permutations), | ||
mnl = mnl_encode(X, G) | ||
) | ||
|
||
# Create encoding function | ||
encoding_fun <- function(X, G) { | ||
validate_X(X) | ||
validate_G(G) | ||
validate_levels(G, input_levels) | ||
|
||
# Augment original matrix | ||
X_aug <- cbind(X, CM[as.integer(G), ]) | ||
|
||
# Maintain X type | ||
if (is.data.frame(X)) { | ||
X_aug <- as.data.frame(X_aug) | ||
} | ||
|
||
# Maintain row and column names, if appropriate | ||
rownames(X_aug) <- rownames(X) | ||
if (!is.null(colnames(X))) { | ||
colnames(X_aug) <- c(colnames(X), paste(prefix, 1:dim(CM)[2], sep = "")) | ||
} | ||
|
||
return(X_aug) | ||
} | ||
|
||
return(encoding_fun) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
# sufrep: Sufficient Representations of Categorical Variables | ||
|
||
This package implements the methods for providing sufficient representations of categorical variables mentioned in Johannemann et al. (2019). | ||
|
||
|
||
To install this package, run the following commands in R: | ||
|
||
```r | ||
library(devtools) | ||
install_github(grf-labs/sufrep) | ||
``` | ||
|
||
Example usage: | ||
|
||
```r | ||
library(sufrep) | ||
|
||
set.seed(12345) | ||
n <- 100 | ||
p <- 3 | ||
|
||
X <- matrix(rnorm(n * p), n, p) | ||
G <- as.factor(sample(5, size = n, replace = TRUE)) | ||
|
||
# One-hot encoding | ||
onehot_encoder <- make_encoder(X = X, G = G, method = "one_hot") | ||
|
||
train.df <- onehot_encoder(X = X, G = G) | ||
print(head(train.df)) | ||
|
||
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] | ||
# [1,] 0.5855 0.2239 -1.4361 0 0 0 1 | ||
# [2,] 0.7095 -1.1562 -0.6293 1 0 0 0 | ||
# [3,] -0.1093 0.4224 0.2435 0 0 1 0 | ||
# [4,] -0.4535 -1.3248 1.0584 0 0 0 1 | ||
# [5,] 0.6059 0.1411 0.8313 0 1 0 0 | ||
# [6,] -1.8180 -0.5360 0.1052 0 0 0 0 | ||
|
||
# "Means" encoding | ||
means_encoder <- make_encoder(X = X, G = G, method = "means") | ||
|
||
train.df <- means_encoder(X = X, G = G) | ||
print(head(train.df)) | ||
|
||
# [,1] [,2] [,3] [,4] [,5] [,6] | ||
# [1,] 0.5855 0.2239 -1.4361 0.1464 0.014645 -0.21528 | ||
# [2,] 0.7095 -1.1562 -0.6293 0.1892 0.177011 0.03227 | ||
# [3,] -0.1093 0.4224 0.2435 -0.3276 -0.009544 0.06307 | ||
# [4,] -0.4535 -1.3248 1.0584 0.1464 0.014645 -0.21528 | ||
# [5,] 0.6059 0.1411 0.8313 0.4915 0.159208 0.17173 | ||
# [6,] -1.8180 -0.5360 0.1052 0.5474 -0.056997 -0.16276 | ||
``` | ||
|
||
### References | ||
|
||
Jonathan Johannemann, Vitor Hadad, Susan Athey, and Stefan Wager. _Sufficient Representations of Categorical Variables_. 2019. |
Oops, something went wrong.