Skip to content

hassanmohsin/dl-docker

Repository files navigation

dl-docker

Docker image for Deep Learning

Pre-requisites

  • Docker-CE: Install docker-ce by following the instructions here: https://docs.docker.com/install/linux/docker-ce/ubuntu/
  • NVIDIA runtime: Run the setup file (Ubuntu/Centos7) from this repository.

Installed libraries

  • CUDA Toolkit 9.2
  • CUDNN Library 7.3.1
  • Tensorflow 1.12
  • Keras latest

Installation

Using Dockerfile

  • Clone this repository
git clone https://github.com/hassanmohsin/dl-docker.git
cd dl-docker
  • Run the Dockerfile to create an image
docker build -t hassanmohsin/dl-docker:gpu .

Using Docker Hub

  • Pull the docker image from the Docker HUB
docker pull hassanmohisn/dl-docker:gpu

Running docker image

  • Test the image by running the test script (benchmark.py)
docker run -it --rm -v `pwd`:`pwd` -w `pwd` --runtime=nvidia hassanmohsin/dl:gpu python benchmark.py gpu 20000
  • -i (interactive) flag to keep stdin open and -t to allocate a terminal
  • --rm to remove the container after executing the script
  • -v `pwd`:`pwd` to mount the current working directory to the container with the same path
  • -w `pwd to get the working the directory inside the container
  • --runtime=nvidia to activate the nvidia runtime

Running Jupyter Notebook

docker run -it --rm --runtime=nvidia -p 8888:8888 hassanmohsin/dl-docker:gpu

This command is to listen to the port 8888 of the docker and forwarding that port through SSH.

About

Docker image for Deep Learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published