-
Notifications
You must be signed in to change notification settings - Fork 47
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
2,167 additions
and
263 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,341 @@ | ||
#!/usr/bin/env python | ||
r""" | ||
""" | ||
|
||
import os | ||
import shutil | ||
from pathlib import Path | ||
import time | ||
import numpy as np | ||
from scipy.optimize import minimize | ||
from simsopt.field import BiotSavart, Current, coils_via_symmetries | ||
# from simsopt.field import CoilCoilNetForces, CoilCoilNetTorques, \ | ||
# TotalVacuumEnergy, CoilSelfNetForces, CoilCoilNetForces12, CoilCoilNetTorques12 | ||
from simsopt.field import regularization_rect | ||
from simsopt.field.force import MeanSquaredForce, coil_force, coil_torque, coil_net_torques, coil_net_forces, LpCurveForce, \ | ||
SquaredMeanForce, \ | ||
MeanSquaredTorque, SquaredMeanTorque, LpCurveTorque, MixedSquaredMeanForce, MixedLpCurveForce | ||
from simsopt.util import calculate_on_axis_B | ||
from simsopt.geo import ( | ||
CurveLength, CurveCurveDistance, | ||
MeanSquaredCurvature, LpCurveCurvature, CurveSurfaceDistance, LinkingNumber, | ||
SurfaceRZFourier, curves_to_vtk, create_equally_spaced_planar_curves, | ||
create_planar_curves_between_two_toroidal_surfaces | ||
) | ||
from simsopt.objectives import Weight, SquaredFlux, QuadraticPenalty | ||
from simsopt.util import in_github_actions | ||
import cProfile | ||
import re | ||
|
||
t1 = time.time() | ||
|
||
# File for the desired boundary magnetic surface: | ||
TEST_DIR = (Path(__file__).parent / ".." / ".." / "tests" / "test_files").resolve() | ||
input_name = 'input.LandremanPaul2021_QA_reactorScale_lowres' | ||
filename = TEST_DIR / input_name | ||
|
||
# Initialize the boundary magnetic surface: | ||
range_param = "half period" | ||
nphi = 32 | ||
ntheta = 32 | ||
poff = 1.5 | ||
coff = 3.0 | ||
s = SurfaceRZFourier.from_vmec_input(filename, range=range_param, nphi=nphi, ntheta=ntheta) | ||
s_inner = SurfaceRZFourier.from_vmec_input(filename, range=range_param, nphi=nphi * 4, ntheta=ntheta * 4) | ||
s_outer = SurfaceRZFourier.from_vmec_input(filename, range=range_param, nphi=nphi * 4, ntheta=ntheta * 4) | ||
|
||
# Make the inner and outer surfaces by extending the plasma surface | ||
s_inner.extend_via_normal(poff) | ||
s_outer.extend_via_normal(poff + coff) | ||
|
||
qphi = nphi * 2 | ||
qtheta = ntheta * 2 | ||
quadpoints_phi = np.linspace(0, 1, qphi, endpoint=True) | ||
quadpoints_theta = np.linspace(0, 1, qtheta, endpoint=True) | ||
|
||
# Make high resolution, full torus version of the plasma boundary for plotting | ||
s_plot = SurfaceRZFourier.from_vmec_input( | ||
filename, | ||
quadpoints_phi=quadpoints_phi, | ||
quadpoints_theta=quadpoints_theta | ||
) | ||
|
||
### Initialize some TF coils | ||
def initialize_coils_QA(TEST_DIR, s): | ||
""" | ||
Initializes coils for each of the target configurations that are | ||
used for permanent magnet optimization. | ||
Args: | ||
config_flag: String denoting the stellarator configuration | ||
being initialized. | ||
TEST_DIR: String denoting where to find the input files. | ||
out_dir: Path or string for the output directory for saved files. | ||
s: plasma boundary surface. | ||
Returns: | ||
base_curves: List of CurveXYZ class objects. | ||
curves: List of Curve class objects. | ||
coils: List of Coil class objects. | ||
""" | ||
from simsopt.geo import create_equally_spaced_curves | ||
from simsopt.field import Current, Coil, coils_via_symmetries | ||
from simsopt.geo import curves_to_vtk | ||
|
||
# generate planar TF coils | ||
ncoils = 1 | ||
R0 = s.get_rc(0, 0) * 1 | ||
R1 = s.get_rc(1, 0) * 4 | ||
order = 16 | ||
|
||
from simsopt.mhd.vmec import Vmec | ||
vmec_file = 'wout_LandremanPaul2021_QA_reactorScale_lowres_reference.nc' | ||
total_current = Vmec(TEST_DIR / vmec_file).external_current() / (2 * s.nfp) / 1.2 | ||
print('Total current = ', total_current) | ||
|
||
# Only need Jax flag for CurvePlanarFourier class | ||
base_curves = create_equally_spaced_curves( | ||
ncoils, s.nfp, stellsym=True, | ||
R0=R0, R1=R1, order=order, numquadpoints=256, | ||
jax_flag=False, | ||
) | ||
|
||
base_currents = [(Current(total_current / ncoils * 1e-7) * 1e7) for _ in range(ncoils)] | ||
base_currents[0].fix_all() | ||
coils = coils_via_symmetries(base_curves, base_currents, s.nfp, True) | ||
|
||
# Initialize the coil curves and save the data to vtk | ||
curves = [c.curve for c in coils] | ||
currents = [c.current.get_value() for c in coils] | ||
return base_curves, curves, coils, base_currents | ||
|
||
# initialize the coils | ||
base_curves_TF, curves_TF, coils_TF, currents_TF = initialize_coils_QA(TEST_DIR, s) | ||
num_TF_unique_coils = len(base_curves_TF) | ||
base_coils_TF = coils_TF[:num_TF_unique_coils] | ||
currents_TF = np.array([coil.current.get_value() for coil in coils_TF]) | ||
|
||
# # Set up BiotSavart fields | ||
bs_TF = BiotSavart(coils_TF) | ||
|
||
# # Calculate average, approximate on-axis B field strength | ||
calculate_on_axis_B(bs_TF, s) | ||
|
||
# wire cross section for the TF coils is a square 20 cm x 20 cm | ||
# Only need this if make self forces and TVE nonzero in the objective! | ||
a = 0.2 | ||
b = 0.2 | ||
nturns_TF = 200 | ||
|
||
def pointData_forces_torques(coils, allcoils, aprimes, bprimes, nturns_list): | ||
contig = np.ascontiguousarray | ||
forces = np.zeros((len(coils), len(coils[0].curve.gamma()) + 1, 3)) | ||
torques = np.zeros((len(coils), len(coils[0].curve.gamma()) + 1, 3)) | ||
for i, c in enumerate(coils): | ||
aprime = aprimes[i] | ||
bprime = bprimes[i] | ||
forces[i, :-1, :] = coil_force(c, allcoils, regularization_rect(aprime, bprime), nturns_list[i]) | ||
torques[i, :-1, :] = coil_torque(c, allcoils, regularization_rect(aprime, bprime), nturns_list[i]) | ||
|
||
forces[:, -1, :] = forces[:, 0, :] | ||
torques[:, -1, :] = torques[:, 0, :] | ||
forces = forces.reshape(-1, 3) | ||
torques = torques.reshape(-1, 3) | ||
point_data = {"Pointwise_Forces": (contig(forces[:, 0]), contig(forces[:, 1]), contig(forces[:, 2])), | ||
"Pointwise_Torques": (contig(torques[:, 0]), contig(torques[:, 1]), contig(torques[:, 2]))} | ||
return point_data | ||
|
||
btot = bs_TF | ||
calculate_on_axis_B(btot, s) | ||
btot.set_points(s.gamma().reshape((-1, 3))) | ||
|
||
LENGTH_WEIGHT = Weight(0.01) | ||
LENGTH_TARGET = 90 | ||
LINK_WEIGHT = 1e3 | ||
CC_THRESHOLD = 0.8 | ||
CC_WEIGHT = 1e1 | ||
CS_THRESHOLD = 1.5 | ||
CS_WEIGHT = 1e2 | ||
# Weight for the Coil Coil forces term | ||
FORCE_WEIGHT = Weight(0.0) # Forces are in Newtons, and typical values are ~10^5, 10^6 Newtons | ||
FORCE_WEIGHT2 = Weight(0.0) # Forces are in Newtons, and typical values are ~10^5, 10^6 Newtons | ||
TORQUE_WEIGHT = Weight(0.0) # Forces are in Newtons, and typical values are ~10^5, 10^6 Newtons | ||
TORQUE_WEIGHT2 = Weight(0.0) # Forces are in Newtons, and typical values are ~10^5, 10^6 Newtons | ||
# Directory for output | ||
OUT_DIR = ("./QA_1TF_minimal/") | ||
if os.path.exists(OUT_DIR): | ||
shutil.rmtree(OUT_DIR) | ||
os.makedirs(OUT_DIR, exist_ok=True) | ||
|
||
curves_to_vtk( | ||
curves_TF, | ||
OUT_DIR + "curves_TF_0", | ||
close=True, | ||
extra_point_data=pointData_forces_torques(coils_TF, coils_TF, np.ones(len(coils_TF)) * a, np.ones(len(coils_TF)) * b, np.ones(len(coils_TF)) * nturns_TF), | ||
I=currents_TF, | ||
NetForces=coil_net_forces(coils_TF, coils_TF, regularization_rect(np.ones(len(coils_TF)) * a, np.ones(len(coils_TF)) * b), np.ones(len(coils_TF)) * nturns_TF), | ||
NetTorques=coil_net_torques(coils_TF, coils_TF, regularization_rect(np.ones(len(coils_TF)) * a, np.ones(len(coils_TF)) * b), np.ones(len(coils_TF)) * nturns_TF) | ||
) | ||
# Force and Torque calculations spawn a bunch of spurious BiotSavart child objects -- erase them! | ||
for c in (coils_TF): | ||
c._children = set() | ||
|
||
# Repeat for whole B field | ||
pointData = {"B_N": np.sum(btot.B().reshape((nphi, ntheta, 3)) * s.unitnormal(), axis=2)[:, :, None]} | ||
s.to_vtk(OUT_DIR + "surf_init", extra_data=pointData) | ||
|
||
btot.set_points(s_plot.gamma().reshape((-1, 3))) | ||
pointData = {"B_N": np.sum(btot.B().reshape((qphi, qtheta, 3)) * s_plot.unitnormal(), axis=2)[:, :, None]} | ||
s_plot.to_vtk(OUT_DIR + "surf_full_init", extra_data=pointData) | ||
btot.set_points(s.gamma().reshape((-1, 3))) | ||
|
||
# Define the individual terms objective function: | ||
Jf = SquaredFlux(s, btot) | ||
# Separate length penalties on the dipole coils and the TF coils | ||
# since they have very different sizes | ||
# Jls = [CurveLength(c) for c in base_curves] | ||
Jls_TF = [CurveLength(c) for c in base_curves_TF] | ||
Jlength = QuadraticPenalty(sum(Jls_TF), LENGTH_TARGET, "max") | ||
|
||
# coil-coil and coil-plasma distances should be between all coils | ||
Jccdist = CurveCurveDistance(curves_TF, CC_THRESHOLD, num_basecurves=len(coils_TF)) | ||
Jcsdist = CurveSurfaceDistance(curves_TF, s, CS_THRESHOLD) | ||
|
||
# While the coil array is not moving around, they cannot | ||
# interlink. | ||
linkNum = LinkingNumber(curves_TF, downsample=2) | ||
|
||
# Currently, all force terms involve all the coils | ||
all_coils = coils_TF | ||
all_base_coils = base_coils_TF | ||
Jforce = sum([LpCurveForce(c, all_coils, regularization_rect(a, b), p=4, threshold=4e5 * 100, downsample=1 | ||
) for i, c in enumerate(all_base_coils)]) | ||
Jforce2 = sum([SquaredMeanForce(c, all_coils, downsample=1) for c in all_base_coils]) | ||
|
||
# Errors creep in when downsample = 2 | ||
Jtorque = sum([LpCurveTorque(c, all_coils, regularization_rect(a, b), p=2, threshold=4e5 * 100, downsample=1 | ||
) for i, c in enumerate(all_base_coils)]) | ||
Jtorque2 = sum([SquaredMeanTorque(c, all_coils, downsample=1) for c in all_base_coils]) | ||
|
||
JF = Jf \ | ||
+ CC_WEIGHT * Jccdist \ | ||
+ CS_WEIGHT * Jcsdist \ | ||
+ LINK_WEIGHT * linkNum \ | ||
+ LENGTH_WEIGHT * Jlength | ||
|
||
if FORCE_WEIGHT.value > 0.0: | ||
JF += FORCE_WEIGHT.value * Jforce #\ | ||
|
||
if FORCE_WEIGHT2.value > 0.0: | ||
JF += FORCE_WEIGHT2.value * Jforce2 #\ | ||
|
||
if TORQUE_WEIGHT.value > 0.0: | ||
JF += TORQUE_WEIGHT * Jtorque | ||
|
||
if TORQUE_WEIGHT2.value > 0.0: | ||
JF += TORQUE_WEIGHT2 * Jtorque2 | ||
|
||
def fun(dofs): | ||
JF.x = dofs | ||
J = JF.J() | ||
grad = JF.dJ() | ||
jf = Jf.J() | ||
length_val = LENGTH_WEIGHT.value * Jlength.J() | ||
cc_val = CC_WEIGHT * Jccdist.J() | ||
cs_val = CS_WEIGHT * Jcsdist.J() | ||
link_val = LINK_WEIGHT * linkNum.J() | ||
forces_val = FORCE_WEIGHT.value * Jforce.J() | ||
forces_val2 = FORCE_WEIGHT2.value * Jforce2.J() | ||
torques_val = TORQUE_WEIGHT.value * Jtorque.J() | ||
torques_val2 = TORQUE_WEIGHT2.value * Jtorque2.J() | ||
BdotN = np.mean(np.abs(np.sum(btot.B().reshape((nphi, ntheta, 3)) * s.unitnormal(), axis=2))) | ||
BdotN_over_B = np.mean(np.abs(np.sum(btot.B().reshape((nphi, ntheta, 3)) * s.unitnormal(), axis=2)) | ||
) / np.mean(btot.AbsB()) | ||
outstr = f"J={J:.1e}, Jf={jf:.1e}, ⟨B·n⟩={BdotN:.1e}, ⟨B·n⟩/⟨B⟩={BdotN_over_B:.1e}" | ||
valuestr = f"J={J:.2e}, Jf={jf:.2e}" | ||
cl_string = ", ".join([f"{J.J():.1f}" for J in Jls_TF]) | ||
outstr += f", Len=sum([{cl_string}])={sum(J.J() for J in Jls_TF):.2f}" | ||
valuestr += f", LenObj={length_val:.2e}" | ||
valuestr += f", ccObj={cc_val:.2e}" | ||
valuestr += f", csObj={cs_val:.2e}" | ||
valuestr += f", Lk1Obj={link_val:.2e}" | ||
valuestr += f", forceObj={forces_val:.2e}" | ||
valuestr += f", forceObj2={forces_val2:.2e}" | ||
valuestr += f", torqueObj={torques_val:.2e}" | ||
valuestr += f", torqueObj2={torques_val2:.2e}" | ||
outstr += f", F={Jforce.J():.2e}" | ||
outstr += f", Fnet={Jforce2.J():.2e}" | ||
outstr += f", T={Jtorque.J():.2e}" | ||
outstr += f", Tnet={Jtorque2.J():.2e}" | ||
outstr += f", C-C-Sep={Jccdist.shortest_distance():.2f}, C-S-Sep={Jcsdist.shortest_distance():.2f}" | ||
outstr += f", Link Number = {linkNum.J()}" | ||
outstr += f", ║∇J║={np.linalg.norm(grad):.1e}" | ||
print(outstr) | ||
print(valuestr) | ||
return J, grad | ||
|
||
|
||
print(""" | ||
################################################################################ | ||
### Perform a Taylor test ###################################################### | ||
################################################################################ | ||
""") | ||
f = fun | ||
dofs = JF.x | ||
np.random.seed(1) | ||
h = np.random.uniform(size=dofs.shape) | ||
J0, dJ0 = f(dofs) | ||
dJh = sum(dJ0 * h) | ||
for eps in [1e-3, 1e-4, 1e-5, 1e-6, 1e-7]: | ||
t1 = time.time() | ||
J1, _ = f(dofs + eps*h) | ||
J2, _ = f(dofs - eps*h) | ||
t2 = time.time() | ||
print("err", (J1-J2)/(2*eps) - dJh) | ||
|
||
print(""" | ||
################################################################################ | ||
### Run the optimisation ####################################################### | ||
################################################################################ | ||
""") | ||
|
||
n_saves = 1 | ||
MAXITER = 500 | ||
for i in range(1, n_saves + 1): | ||
print('Iteration ' + str(i) + ' / ' + str(n_saves)) | ||
res = minimize(fun, dofs, jac=True, method='L-BFGS-B', | ||
options={'maxiter': MAXITER, 'maxcor': 300}, tol=1e-15) | ||
# dofs = res.x | ||
curves_to_vtk( | ||
[c.curve for c in bs_TF.coils], | ||
OUT_DIR + "curves_TF_{0:d}".format(i), | ||
close=True, | ||
extra_point_data=pointData_forces_torques(coils_TF, coils_TF, np.ones(len(coils_TF)) * a, np.ones(len(coils_TF)) * b, np.ones(len(coils_TF)) * nturns_TF), | ||
I=[c.current.get_value() for c in bs_TF.coils], | ||
NetForces=coil_net_forces(coils_TF, coils_TF, regularization_rect(np.ones(len(coils_TF)) * a, np.ones(len(coils_TF)) * b), np.ones(len(coils_TF)) * nturns_TF), | ||
NetTorques=coil_net_torques(coils_TF, coils_TF, regularization_rect(np.ones(len(coils_TF)) * a, np.ones(len(coils_TF)) * b), np.ones(len(coils_TF)) * nturns_TF), | ||
) | ||
|
||
btot.set_points(s_plot.gamma().reshape((-1, 3))) | ||
pointData = {"B_N": np.sum(btot.B().reshape((qphi, qtheta, 3)) * s_plot.unitnormal(), axis=2)[:, :, None]} | ||
s_plot.to_vtk(OUT_DIR + "surf_full_{0:d}".format(i), extra_data=pointData) | ||
|
||
pointData = {"B_N / B": (np.sum(btot.B().reshape((qphi, qtheta, 3)) * s_plot.unitnormal(), axis=2 | ||
) / np.linalg.norm(btot.B().reshape(qphi, qtheta, 3), axis=-1))[:, :, None]} | ||
s_plot.to_vtk(OUT_DIR + "surf_full_normalizedBn_{0:d}".format(i), extra_data=pointData) | ||
|
||
btot.set_points(s.gamma().reshape((-1, 3))) | ||
calculate_on_axis_B(btot, s) | ||
# LENGTH_WEIGHT *= 0.01 | ||
# JF = Jf \ | ||
# + CC_WEIGHT * Jccdist \ | ||
# + CS_WEIGHT * Jcsdist \ | ||
# + LINK_WEIGHT * linkNum \ | ||
# + LINK_WEIGHT2 * linkNum2 \ | ||
# + LENGTH_WEIGHT * sum(Jls_TF) | ||
|
||
|
||
t2 = time.time() | ||
print('Total time = ', t2 - t1) | ||
btot.save(OUT_DIR + "biot_savart_optimized_QA.json") | ||
print(OUT_DIR) | ||
|
Oops, something went wrong.