Skip to content
forked from Nixtla/nixtla

Python SDK for TimeGPT, a foundational time series model

License

Notifications You must be signed in to change notification settings

hollerback370/nixtla

 
 

Repository files navigation

Nixtla   Tweet  Slack

NixtlaTS

Forecast using TimeGPT

CI Python PyPi License docs Downloads

NixtlaTS offers a collection of classes and methods to interact with the API of TimeGPT.

🕰️ TimeGPT: Revolutionizing Time-Series Analysis

Developed by Nixtla, TimeGPT is a cutting-edge generative pre-trained transformer model dedicated to prediction tasks. 🚀 By leveraging the most extensive dataset ever – financial, weather, energy, and sales data – TimeGPT brings unparalleled time-series analysis right to your terminal! 👩‍💻👨‍💻

In seconds, TimeGPT can discern complex patterns and predict future data points, transforming the landscape of data science and predictive analytics.

⚙️ Fine-Tuning: For Precision Prediction

In addition to its core capabilities, TimeGPT supports fine-tuning, enhancing its specialization for specific prediction tasks. 🎯 This feature is like training a machine learning model on a targeted data subset to improve its task-specific performance, making TimeGPT an even more versatile tool for your predictive needs.

🔄 NixtlaTS: Your Gateway to TimeGPT

With NixtlaTS, you can easily interact with TimeGPT through simple API calls, making the power of TimeGPT readily accessible in your projects.

💻 Installation

Get NixtlaTS up and running with a simple pip command:

pip install nixtlats>=0.1.0

🎈 Quick Start

Get started with TimeGPT now:

df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short.csv')

from nixtlats import TimeGPT
timegpt = TimeGPT(
    # defaults to os.environ.get("TIMEGPT_TOKEN")
    token = 'my_token_provided_by_nixtla'
)
fcst_df = timegpt.forecast(df, h=24, level=[80, 90])

About

Python SDK for TimeGPT, a foundational time series model

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 97.4%
  • Python 2.5%
  • Other 0.1%