Skip to content

Commit

Permalink
Find the Lagrangian multipliers for a 2D toy linear system. (#10)
Browse files Browse the repository at this point in the history
  • Loading branch information
hongkai-dai authored Oct 13, 2023
1 parent a4152f7 commit b602635
Show file tree
Hide file tree
Showing 3 changed files with 91 additions and 0 deletions.
2 changes: 2 additions & 0 deletions .github/workflows/python-app.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,3 +21,5 @@ jobs:
run: flake8 ./
- name: unit test
run: pytest tests
- name: run linear_toy_demo
run: python examples/linear_toy/linear_toy_demo.py
87 changes: 87 additions & 0 deletions examples/linear_toy/linear_toy_demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
import compatible_clf_cbf.clf_cbf as clf_cbf
import numpy as np

import pydrake.systems.controllers
import pydrake.solvers
import pydrake.symbolic as sym


def main():
A = np.array([[1, 2], [-2, 3.0]])
B = np.array([[1, 0], [0, 1.0]])

# First compute the LQR controller through Riccati equation.
Q = np.eye(2)
R = np.eye(2)
K_lqr, S_lqr = pydrake.systems.controllers.LinearQuadraticRegulator(A, B, Q, R)

prog = pydrake.solvers.MathematicalProgram()
x = prog.NewIndeterminates(2, "x")

Ax = A @ x
f = np.array([sym.Polynomial(Ax[i]) for i in range(2)])
g = np.empty(B.shape, dtype=object)
for i in range(B.shape[0]):
for j in range(B.shape[1]):
g[i, j] = sym.Polynomial(B[i, j])

# Use an arbitrary unsafe region
alpha = 0.5
unsafe_regions = [np.array([0.9 * alpha - sym.Polynomial(x.dot(S_lqr @ x))])]

use_y_squared = False

dut = clf_cbf.CompatibleClfCbf(
f=f,
g=g,
x=x,
unsafe_regions=unsafe_regions,
Au=None,
bu=None,
with_clf=True,
use_y_squared=use_y_squared,
)
prog.AddIndeterminates(dut.y)

V = sym.Polynomial(x.dot(S_lqr @ x))
b = np.array([alpha - V])
kappa_V = 0.001
kappa_b = np.array([0.001])
y_size = dut.y.size

lagrangians = clf_cbf.CompatibleLagrangians.reserve(
nu=2,
use_y_squared=use_y_squared,
y_size=y_size,
with_rho_minus_V=False,
b_plus_eps_size=None,
)
lagrangians.lambda_y[0] = prog.NewFreePolynomial(dut.xy_set, deg=4)
lagrangians.lambda_y[1] = prog.NewFreePolynomial(dut.xy_set, deg=4)
lagrangians.xi_y = prog.NewFreePolynomial(dut.xy_set, deg=4)
if not use_y_squared:
for i in range(y_size):
lagrangians.y[i] = prog.NewSosPolynomial(dut.xy_set, degree=2)[0]

dut._add_compatibility(
prog=prog,
V=V,
b=b,
kappa_V=kappa_V,
kappa_b=kappa_b,
lagrangians=lagrangians,
rho=None,
barrier_eps=None,
)

result = pydrake.solvers.Solve(prog)
assert result.is_success()
lagrangians_result = lagrangians.get_result(result, coefficient_tol=1e-8)
print(f"lambda_y lagrangian\n{lagrangians_result.lambda_y}")
print(f"xi_y lagrangian\n{lagrangians_result.xi_y}")
if not use_y_squared:
print(f"y lagrangian\n{lagrangians_result.y}")


if __name__ == "__main__":
main()
2 changes: 2 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
black
black[jupyter]
drake
flake8
ipykernel
matplotlib
numpy
pytest
Expand Down

0 comments on commit b602635

Please sign in to comment.