Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tune the nonlinear toy example. #60

Merged
merged 1 commit into from
Aug 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/python-app.yml
Original file line number Diff line number Diff line change
Expand Up @@ -27,5 +27,5 @@ jobs:
run: python examples/linear_toy/linear_toy_w_input_limits_demo.py
- name: run nonlinear_toy_demo
run: python examples/nonlinear_toy/demo.py
- name: run nonlinear_toy_trigpoly_demo
run: python examples/nonlinear_toy/wo_input_limits_trigpoly_demo.py
- name: run nonlinear toy demo_trigpoly
run: python examples/nonlinear_toy/demo_trigpoly.py --unit_test
290 changes: 290 additions & 0 deletions examples/nonlinear_toy/demo_trigpoly.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,290 @@
"""
Find the CLF/CBF without the input limits.
We use the trigonometric state with polynomial dynamics.
"""

import argparse
import os
from typing import Optional, Tuple

import matplotlib.axes
import matplotlib.contour
import matplotlib.pyplot as plt
import numpy as np

import pydrake.symbolic as sym
import pydrake.solvers as solvers

import compatible_clf_cbf.clf_cbf as clf_cbf
import compatible_clf_cbf.utils as utils
import examples.nonlinear_toy.toy_system as toy_system


def plot_clf_cbf(
ax: matplotlib.axes.Axes,
V: sym.Polynomial,
b: np.ndarray,
x: np.ndarray,
fill_compatible: bool,
) -> Tuple[
matplotlib.contour.QuadContourSet,
matplotlib.contour.QuadContourSet,
Optional[matplotlib.contour.QuadContourSet],
]:
"""
Plot the CLF/CBF in the θ, θdot plane.

Args:
fill_compatible: Fill in the compatible region.
"""
grid_theta, grid_theta_dot = np.meshgrid(
np.linspace(-np.pi, np.pi, 100), np.linspace(-3, 3, 100)
)
grid_x_vals = np.concatenate(
(
np.sin(grid_theta.reshape((1, -1))),
np.cos(grid_theta.reshape((1, -1))) - 1,
grid_theta_dot.reshape((1, -1)),
),
axis=0,
)
grid_V = V.EvaluateIndeterminates(x, grid_x_vals).reshape(grid_theta.shape)
grid_b = b[0].EvaluateIndeterminates(x, grid_x_vals).reshape(grid_theta.shape)
h_V = ax.contour(
grid_theta, grid_theta_dot, grid_V, levels=np.array([1]), colors="red"
)
h_b = ax.contour(
grid_theta, grid_theta_dot, grid_b, levels=np.array([0]), colors="blue"
)

if fill_compatible:
# Fill in the region {x|V(x)<=1, b(x) >= 0}, namely
# {x | max(V(x)-1, -b(x)) <= 0}.
grid_fill_vals = np.maximum(grid_V - 1, -grid_b)
h_compatible = ax.contourf(
grid_theta,
grid_theta_dot,
grid_fill_vals,
levels=[-np.inf, 0],
colors="green",
alpha=0.2,
)
else:
h_compatible = None

return h_V, h_b, h_compatible


def get_unsafe_regions(x: np.ndarray) -> np.ndarray:
return np.array([sym.Polynomial(x[0] + x[1] + x[2] + 2)])


def plot_unsafe_regions(ax: matplotlib.axes.Axes):
x = sym.MakeVectorContinuousVariable(3, "x")
unsafe_regions = get_unsafe_regions(x)
grid_theta, grid_theta_dot = np.meshgrid(
np.linspace(-np.pi, np.pi, 100), np.linspace(-3, 3, 100)
)
grid_x_vals = np.concatenate(
(
np.sin(grid_theta.reshape((1, -1))),
np.cos(grid_theta.reshape((1, -1))) - 1,
grid_theta_dot.reshape((1, -1)),
),
axis=0,
)
unsafe_values = (
np.concatenate(
[
region.EvaluateIndeterminates(x, grid_x_vals).reshape((1, -1))
for region in unsafe_regions
],
axis=0,
)
.max(axis=0)
.reshape(grid_theta.shape)
)
h_unsafe = ax.contourf(
grid_theta,
grid_theta_dot,
unsafe_values,
levels=np.array([-np.inf, 0.0]),
alpha=0.5,
colors="grey",
)
return h_unsafe


def get_clf_cbf_init(x: np.ndarray) -> Tuple[sym.Polynomial, np.ndarray]:
V_init = sym.Polynomial(x[0] ** 2 + x[1] ** 2 + x[2] ** 2) / 0.1
b_init = np.array([sym.Polynomial(0.1 - x[0] ** 2 - x[1] ** 2 - x[2] ** 2)])
return V_init, b_init


def plot_clf_cbf_init(
ax: matplotlib.axes.Axes,
) -> Tuple[matplotlib.contour.QuadContourSet, matplotlib.contour.QuadContourSet]:
x = sym.MakeVectorContinuousVariable(3, "x")
V_init, b_init = get_clf_cbf_init(x)
h_V_init, h_b_init, _ = plot_clf_cbf(ax, V_init, b_init, x, fill_compatible=False)
h_V_init.set(linestyle="dotted", edgecolor="r")
h_b_init.set(linestyle=(0, (3, 5, 1, 5)), edgecolor="b")
return h_V_init, h_b_init


def search(unit_test_flag: bool = False):
x = sym.MakeVectorContinuousVariable(3, "x")
f, g = toy_system.affine_trig_poly_dynamics(x)
state_eq_constraints = np.array([toy_system.affine_trig_poly_state_constraints(x)])
use_y_squared = True
compatible = clf_cbf.CompatibleClfCbf(
f=f,
g=g,
x=x,
unsafe_regions=[get_unsafe_regions(x)],
Au=np.array([[1], [-1]]),
bu=np.array([1, 1]),
with_clf=True,
use_y_squared=use_y_squared,
state_eq_constraints=state_eq_constraints,
)
V_init, b_init = get_clf_cbf_init(x)

compatible_lagrangian_degrees = clf_cbf.CompatibleLagrangianDegrees(
lambda_y=[clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=0)],
xi_y=clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=0),
y=None,
rho_minus_V=clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=2),
b_plus_eps=[clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=2)],
state_eq_constraints=[clf_cbf.CompatibleLagrangianDegrees.Degree(x=2, y=2)],
)
unsafe_region_lagrangian_degrees = [
clf_cbf.UnsafeRegionLagrangianDegrees(
cbf=0, unsafe_region=[0], state_eq_constraints=[0]
)
]
kappa_V = 0.01
kappa_b = np.array([0.01])
barrier_eps = np.array([0.001])

x_equilibrium = np.array([0, 0.0, 0.0])

clf_degree = 2
cbf_degrees = [2]
max_iter = 20

binary_search_scale_options = None
inner_ellipsoid_options = None
compatible_states_options = clf_cbf.CompatibleStatesOptions(
candidate_compatible_states=np.array(
[
[np.sin(-np.pi / 3), np.cos(-np.pi / 3) - 1, -0.5],
[np.sin(0), np.cos(0) - 1, -1.5],
[np.sin(np.pi / 2), np.cos(np.pi / 2) - 1, -1.9],
]
),
anchor_states=np.array([[0.0, 0, 0]]),
b_anchor_bounds=[(np.array([0]), np.array([0.1]))],
weight_V=1,
weight_b=np.array([1.0]),
b_margins=np.array([0.01]),
)
solver_options = solvers.SolverOptions()
solver_options.SetOption(solvers.CommonSolverOption.kPrintToConsole, 0)

V, b = compatible.bilinear_alternation(
V_init,
b_init,
compatible_lagrangian_degrees,
unsafe_region_lagrangian_degrees,
kappa_V,
kappa_b,
barrier_eps,
x_equilibrium,
clf_degree,
cbf_degrees,
max_iter,
inner_ellipsoid_options=inner_ellipsoid_options,
binary_search_scale_options=binary_search_scale_options,
compatible_states_options=compatible_states_options,
solver_options=solver_options,
backoff_scale=utils.BackoffScale(rel=None, abs=0.01),
)
print(f"V={V}")
print(f"b={b}")
assert V is not None
x_set = sym.Variables(x)
if not unit_test_flag:
clf_cbf.save_clf_cbf(
V,
b,
x_set,
kappa_V,
kappa_b,
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"../../data/nonlinear_toy_clf_cbf.pkl",
),
)
return V, b


def visualize():
x = sym.MakeVectorContinuousVariable(3, "x")
f, g = toy_system.affine_trig_poly_dynamics(x)
path = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"../../data/nonlinear_toy_clf_cbf.pkl",
)
x_set = sym.Variables(x)
saved_data = clf_cbf.load_clf_cbf(path, x_set)
fig = plt.figure()
ax = fig.add_subplot()
ax.set_xlabel(r"$\theta$ (rad)", fontsize=16)
ax.set_ylabel(r"$\dot{\theta}$ (rad/s)", fontsize=16)
ax.set_xticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi])
ax.set_xticklabels(
[r"$-\pi$", r"$-\frac{\pi}{2}$", r"0", r"$\frac{\pi}{2}$", r"$\pi$"]
)
ax.tick_params(axis="both", which="major", labelsize=14)
h_V, h_b, h_compatible = plot_clf_cbf(
ax, saved_data["V"], saved_data["b"], x, fill_compatible=True
)
h_V_init, h_b_init = plot_clf_cbf_init(ax)
plot_unsafe_regions(ax)
ax.legend(
[
h_V.legend_elements()[0][0],
h_b.legend_elements()[0][0],
h_V_init.legend_elements()[0][0],
h_b_init.legend_elements()[0][0],
],
[r"$V(x)=1$", r"$b(x)=0$", r"$V_{init}(x)=1$", r"$b_{init}(x)=0$"],
prop={"size": 12},
)
fig.show()
for fig_extension in (".png", "pdf"):
fig.savefig(
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
f"../../figures/nonlinear_toy{fig_extension}",
),
bbox_inches="tight",
)

pass


def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--unit_test", action="store_true", help="Only turn this on in the unit test."
)
args = parser.parse_args()
V, b = search(args.unit_test)
if not args.unit_test:
visualize()


if __name__ == "__main__":
main()
Loading