Skip to content

Commit

Permalink
Merge branch 'main' into model-loading-refactor
Browse files Browse the repository at this point in the history
  • Loading branch information
sayakpaul authored Jan 27, 2025
2 parents 18d61bb + 4fa2459 commit 26228eb
Show file tree
Hide file tree
Showing 10 changed files with 3,705 additions and 9 deletions.
92 changes: 90 additions & 2 deletions examples/community/README.md
100755 → 100644
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixart alpha and its diffusers pipeline | [PIXART-α Controlnet pipeline](#pixart-α-controlnet-pipeline) | - | [Raul Ciotescu](https://github.com/raulc0399/) |
| HunyuanDiT Differential Diffusion Pipeline | Applies [Differential Diffusion](https://github.com/exx8/differential-diffusion) to [HunyuanDiT](https://github.com/huggingface/diffusers/pull/8240). | [HunyuanDiT with Differential Diffusion](#hunyuandit-with-differential-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing) | [Monjoy Choudhury](https://github.com/MnCSSJ4x) |
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|

To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.

Expand Down Expand Up @@ -4585,8 +4586,8 @@ image = pipe(
```

| ![Gradient](https://github.com/user-attachments/assets/e38ce4d5-1ae6-4df0-ab43-adc1b45716b5) | ![Input](https://github.com/user-attachments/assets/9c95679c-e9d7-4f5a-90d6-560203acd6b3) | ![Output](https://github.com/user-attachments/assets/5313ff64-a0c4-418b-8b55-a38f1a5e7532) |
| ------------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------- |
| Gradient | Input | Output |
| -------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------ |
| Gradient | Input | Output |

A colab notebook demonstrating all results can be found [here](https://colab.research.google.com/drive/1v44a5fpzyr4Ffr4v2XBQ7BajzG874N4P?usp=sharing). Depth Maps have also been added in the same colab.

Expand Down Expand Up @@ -4634,6 +4635,93 @@ make_image_grid(image, rows=1, cols=len(image))
# 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
```

### Stable Diffusion XL Attentive Eraser Pipeline
<img src="https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/fenmian.png" width="600" />

**Stable Diffusion XL Attentive Eraser Pipeline** is an advanced object removal pipeline that leverages SDXL for precise content suppression and seamless region completion. This pipeline uses **self-attention redirection guidance** to modify the model’s self-attention mechanism, allowing for effective removal and inpainting across various levels of mask precision, including semantic segmentation masks, bounding boxes, and hand-drawn masks. If you are interested in more detailed information and have any questions, please refer to the [paper](https://arxiv.org/abs/2412.12974) and [official implementation](https://github.com/Anonym0u3/AttentiveEraser).

#### Key features

- **Tuning-Free**: No additional training is required, making it easy to integrate and use.
- **Flexible Mask Support**: Works with different types of masks for targeted object removal.
- **High-Quality Results**: Utilizes the inherent generative power of diffusion models for realistic content completion.

#### Usage example
To use the Stable Diffusion XL Attentive Eraser Pipeline, you can initialize it as follows:
```py
import torch
from diffusers import DDIMScheduler, DiffusionPipeline
from diffusers.utils import load_image
import torch.nn.functional as F
from torchvision.transforms.functional import to_tensor, gaussian_blur

dtype = torch.float16
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
custom_pipeline="pipeline_stable_diffusion_xl_attentive_eraser",
scheduler=scheduler,
variant="fp16",
use_safetensors=True,
torch_dtype=dtype,
).to(device)


def preprocess_image(image_path, device):
image = to_tensor((load_image(image_path)))
image = image.unsqueeze_(0).float() * 2 - 1 # [0,1] --> [-1,1]
if image.shape[1] != 3:
image = image.expand(-1, 3, -1, -1)
image = F.interpolate(image, (1024, 1024))
image = image.to(dtype).to(device)
return image

def preprocess_mask(mask_path, device):
mask = to_tensor((load_image(mask_path, convert_method=lambda img: img.convert('L'))))
mask = mask.unsqueeze_(0).float() # 0 or 1
mask = F.interpolate(mask, (1024, 1024))
mask = gaussian_blur(mask, kernel_size=(77, 77))
mask[mask < 0.1] = 0
mask[mask >= 0.1] = 1
mask = mask.to(dtype).to(device)
return mask

prompt = "" # Set prompt to null
seed=123
generator = torch.Generator(device=device).manual_seed(seed)
source_image_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png"
mask_path = "https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png"
source_image = preprocess_image(source_image_path, device)
mask = preprocess_mask(mask_path, device)

image = pipeline(
prompt=prompt,
image=source_image,
mask_image=mask,
height=1024,
width=1024,
AAS=True, # enable AAS
strength=0.8, # inpainting strength
rm_guidance_scale=9, # removal guidance scale
ss_steps = 9, # similarity suppression steps
ss_scale = 0.3, # similarity suppression scale
AAS_start_step=0, # AAS start step
AAS_start_layer=34, # AAS start layer
AAS_end_layer=70, # AAS end layer
num_inference_steps=50, # number of inference steps # AAS_end_step = int(strength*num_inference_steps)
generator=generator,
guidance_scale=1,
).images[0]
image.save('./removed_img.png')
print("Object removal completed")
```

| Source Image | Mask | Output |
| ---------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------- |
| ![Source Image](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024.png) | ![Mask](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/an1024_mask.png) | ![Output](https://raw.githubusercontent.com/Anonym0u3/Images/refs/heads/main/AE_step40_layer34.png) |

# Perturbed-Attention Guidance

[Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance)
Expand Down
Loading

0 comments on commit 26228eb

Please sign in to comment.