v0.11.0
We are excited to introduce the new v0.11.0 release, with many new features and post-training algorithms. The highlights are as follows:
New post-training methods
Generalized Knowledge Distillation
Generalized Knowledge Distillation (GKD) is a post-training method from Google DeepMind that extends standard knowledge distillation by allowing the student to generate outputs during training and receive online feedback from the teacher. It consistently outperforms SFT and in some cases enables the student model to match the performance of the teacher, but with far fewer parameters.
To train models with this method, check out the GKDTrainer
.
Exploratory Preference Optimization
Exploratory Preference Optimization is an online post-training method from researchers at Microsoft, MIT, and Wisconsin that extends DPO to incorporate online feedback from reward models or LLM judges. It is similar to online DPO, but has a slightly different theoretical basis concerning sample efficiency.
To train models with this method, check out the XPOTrainer
.
Nash Learning with Human Feedback
Nash Learning with Human Feedback is a novel post-training method from Google DeepMind that uses pairwise preference models which are conditioned on two inputs, instead of the single one used in reward models. These preference models are then used to train a policy that consistently produces responses that are preferred over those from competing policies, thus approximating a Nash equilibrium (i.e. a two player game where actions are responses and payoffs are given by the preference model).
To train models with this method, check out the NashMDTrainer
.
New trainer features
- Online DPO now supports training LoRA adapters with PEFT, which means you can dramatically reduce the amount of VRAM needed to train models with this method. By @qgallouedec in #2041
- The
OrpoTrainer
has better integration with PyTorchXLA for faster step time on TPUs ⚡ . By @wenxindongwork in #2001
Deprecations 🚨
- The
PPOTrainer
is marked for deprecated in favour ofPPOv2Trainer
to provide a consistent API across TRL's trainers. It will be removed inv0.12.0
. By @qgallouedec in #2016 - The
RichProgressCallback
has been removed from the example scripts as it caused a variety of problems with logging in distributed environments. You can still use it by adding it manually to the trainer callbacks. By @lewtun in #2053
Bugfixes and improvements
- Adds experimental Liger support to SFT script by @edbeeching in #1992
- move slow-tests CI to new cluster by @glegendre01 in #1996
- [Online-DPO] fixes to the training scripts and setup.py by @kashif in #1997
- [pre-commit] update pre-commit yaml by @kashif in #2002
- [Docs] Add Liger-Kernel usage to SFTTrainer page by @ryankert01 in #2007
- [ci] pin numpy to < 2 on windows by @kashif in #2009
- Remove
prompts
arg fromWinrateCallback
by @qgallouedec in #2010 - Allow
WinRateCallback
to be used without reference model by @qgallouedec in #2013 - Feat: Add support for APO-zero in KTOTrainer by @KarelDO in #1952
- Clean configs documentation by @qgallouedec in #1944
- Refactor reward modelling script to work with chat models by @lewtun in #2026
- correct formatting of star sign in kto_trainer.mdx by @mattany in #2031
- Remove unused functions in
core.py
by @northern-64bit in #2017 - Improves formatting of docstring + newlines by @northern-64bit in #2006
- Fix
packing
doc inSFTConfig
and fix error when neitherdataset_text_field
norformatting_func
is provided. by @qgallouedec in #2035 - fix: unpackaging error in Custom Mixture of Experts model when
aux_loss_enabled
is set to True. by @Jonathanjordan21 in #2039 - Drop canonical namespaces by @qgallouedec in #2048
- Change
non_eos_penalty
to be consistent acrossOnPolicy
trainers by @RylanSchaeffer in #2033 - Temporary pin the transformers hash in the CI by @qgallouedec in #2049
- [XPO] xpo trainer by @kashif in #1943
- Fix logits compuation in KTO trainer prediction step by @issamemari in #2050
- [Draft, don't merge] Fix failing windows by @LysandreJik in #2051
- Clean up DPO example by @lewtun in #2043
- Remove
debug
andsanity_check
args by @qgallouedec in #2055 - Gkd trainer by @kashif in #1814
- Documentation dataset format by @qgallouedec in #2020
- Add missing autodocs by @qgallouedec in #2056
- Mask loss in gkd when generating from the student by @gaetanlop in #2058
- ©️ Copyrights by @qgallouedec in #2063
- Support for
SFTTrainer.evaluate()
andSFTTrainer.predict()
with null train_dataset by @Sohaib9920 in #2004 - make cuda-only tests device-agnostic by @faaany in #2044
- Make
ConstantLengthDataset
(orpacking=True
) shuffle examples before they are packed by @muupan in #2037 - Standardise API for
WinRateCallback
andLogCompletionsCallback
by @lewtun in #2061 - Fix dataset in GKD script by @lewtun in #2067
- [online models] remove min_new_tokens=args.max_new_tokens by @kashif in #2069
- Standardising datasets for testing by @qgallouedec in #2065
- [KTO] learning rate recomentations for kto by @kashif in #2070
- Nash md by @kashif in #1853
- Use
transformers
utilities when possible by @qgallouedec in #2064 - Minor doc fixes and comments by @qgallouedec in #2073
- Added error check to RLOO, PPOv2, OnlineDPO that
ref_policy
andpolicy
have different identities by @RylanSchaeffer in #2057 processor(prompt, images=image)
toprocessor(images=image, text=prompt)
by @qgallouedec in #2076- Use wrapped model for reference completions in
WinRateCallback
and set defaultfreq
toeval_steps
in LogCompletionsCallback` by @lewtun in #2074 - Conversational dataset support for Online DPO by @qgallouedec in #2075
- [WIP] Fix
logits/chosen
andlogits/rejected
metrics inkto_trainer
. by @PhilipMay in #2077 - Standardize dataset naming by @qgallouedec in #2081
- Fix deepspeed for
PPOv2Trainer
by @qgallouedec in #2080
New Contributors
- @AdnaneKhan made their first contribution in #1822
- @mkopecki made their first contribution in #1825
- @DZ9 made their first contribution in #1836
- @MAOJIASONG made their first contribution in #1840
- @davanstrien made their first contribution in #1845
- @eliebak made their first contribution in #1863
- @Rishav-hub made their first contribution in #1862
- @cemiu made their first contribution in #1738
- @SunMarc made their first contribution in #1919
- @karel-contextual made their first contribution in #1928
- @RylanSchaeffer made their first contribution in #1932
- @mina-parham made their first contribution in #1961
- @RhuiDih made their first contribution in #1887
- @SeungyounShin made their first contribution in #1969
- @kit1980 made their first contribution in #1933
- @akakakakakaa made their first contribution in #1987
- @hvaara made their first contribution in #1990
- @glegendre01 made their first contribution in #1996
- @ryankert01 made their first contribution in #2007
- @KarelDO made their first contribution in #1952
- @mattany made their first contribution in #2031
- @northern-64bit made their first contribution in #2017
- @Jonathanjordan21 made their first contribution in #2039
- @issamemari made their first contribution in #2050
- @wenxindongwork made their first contribution in #2001
- @Sohaib9920 made their first contribution in #2004
- @faaany made their first contribution in #2044
- @muupan made their first contribution in #2037
- @PhilipMay made their first contribution in #2077
Full Changelog: v0.9.6...v0.11.0