Xinpeng Liu1, Hiroaki Santo1, Yosuke Toda2,3, Fumio Okura1
(1 Osaka University, 2 Phytometrics, 3 Nagoya University)
- CUDA>=9.2
- PyTorch>=1.7.1
For other system requirements please follow
pip install -r requirements.txt
cd ./models/ops
python setup.py bulid install
Please download [Guyot dataset] by following the steps under Usage. The structure of the dataset should be as follows:
guyot_data/
└── train/
└── check/
└── images
└── data/
└── Set02_IMG_3468.pt
└── img/
└── images
└── unet/
└── images
└── test/
└── check/
└── images
└── data/
└── Set02_IMG_3468.pt
└── img/
└── images
└── unet/
└── images
└── val/
└── check/
└── images
└── data/
└── Set02_IMG_3468.pt
└── img/
└── images
└── unet/
└── images
The config file can be found at .configs/tree_2D_use_mst_only1.yaml
and .configs/tree_2D_use_unmst_only1.yaml
. Make custom changes if necessary.
For example, the command for training Relationformer is following:
python -m torch.distributed.launch --nproc_per_node=8 train.py --config configs/tree_2D_use_mst_only1.yaml --cuda_visible_device 0 1 2 3 4 5 6 7
python -m torch.distributed.launch --nproc_per_node=8 train.py --config configs/tree_2D_use_mst_only1.yaml --cuda_visible_device 0 1 2 3 4 5 6 7 --resume trained_weights/check/checkpoint_81_epoch.pkl
Once you have the config file and trained model, run following command to evaluate it on test set:
python valid_smd_guyot_nx.py