LLaVA-Mini is a unified large multimodal model that can support the understanding of images, high-resolution images, and videos in an efficient manner. Guided by the interpretability within LMM, LLaVA-Mini significantly improves efficiency while ensuring vision capabilities. Model and demo of LLaVA-Mini are available now!
Note
LLaVA-Mini only requires 1 token to represent each image, which improves the efficiency of image and video understanding, including:
- Computational effort: 77% FLOPs reduction
- Response latency: reduce from 100 milliseconds to 40 milliseconds
- VRAM memory usage: reduce from 360 MB/image to 0.6 MB/image, support 3-hour video processing
💡Highlight:
- Good Performance: LLaVA-Mini achieves performance comparable to LLaVA-v1.5 while using only 1 vision token instead of 576 (compression rate of 0.17%).
- High Efficiency: LLaVA-Mini can reduce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and process over 10,000 frames of video on the GPU hardware with 24GB of memory.
- Insights: To develop LLaVA-Mini, which reduces vision tokens while maintaining visual understanding, we conduct a preliminary analysis to explore how large multimodal models (LMMs) process visual tokens. Please refer to our paper for a detailed analysis and our conclusions.
-
Download LLaVA-Mini model from here.
-
Run these scripts and Interact with LLaVA-Mini in your browser:
# Launch a controller python -m llavamini.serve.controller --host 0.0.0.0 --port 10000 & # Build the API of LLaVA-Mini CUDA_VISIBLE_DEVICES=0 python -m llavamini.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path ICTNLP/llava-mini-llama-3.1-8b --model-name llava-mini & # Start the interactive interface python -m llavamini.serve.gradio_web_server --controller http://localhost:10000 --model-list-mode reload --port 7860
-
Install packages:
conda create -n llavamini python=3.10 -y conda activate llavamini pip install -e . pip install -e ".[train]" pip install flash-attn --no-build-isolation
-
Image understanding, using
--image-file
:# Image Understanding CUDA_VISIBLE_DEVICES=0 python llavamini/eval/run_llava_mini.py \ --model-path ICTNLP/llava-mini-llama-3.1-8b \ --image-file llavamini/serve/examples/baby_cake.png \ --conv-mode llava_llama_3_1 --model-name "llava-mini" \ --query "What's the text on the cake?"
-
Video understanding, using
--video-file
:# Video Understanding CUDA_VISIBLE_DEVICES=0 python llavamini/eval/run_llava_mini.py \ --model-path ICTNLP/llava-mini-llama-3.1-8b \ --video-file llavamini/serve/examples/fifa.mp4 \ --conv-mode llava_llama_3_1 --model-name "llava-mini" \ --query "What happened in this video?"
- Refer to Evaluation.md for the evaluation of LLaVA-Mini on image/video benchmarks.
- LLaVA-Mini achieves high-quality image understanding and video understanding.
- LLaVA-Mini dynamically compresses image to capture important visual information (brighter areas are more heavily weighted during compression).
- LLaVA: LLaVA-Mini is built upon LLaVA codebase, a large language and vision assistant.
- Video-ChatGPT: The training of LLaVA-Mini involves the video instruction data provided by Video-ChatGPT.
- LLaVA-OneVision: The training of LLaVA-Mini involves the image instruction data provided by LLaVA-OneVision.
If this repository is useful for you, please cite as:
@misc{llavamini,
title={LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token},
author={Shaolei Zhang and Qingkai Fang and Zhe Yang and Yang Feng},
year={2025},
eprint={2501.03895},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2501.03895},
}
If you have any questions, please feel free to submit an issue or contact [email protected]
.