from network import Network
from preprocesser import Preprocesser
from time import time
This repository contains the code needed to train and evaluate the model presented in Scalable End-to-end Recurrent Neural Network for Variable star classification . It is written in python 3 and Tensorflow 1.15.
All the datasets used are available at this link. Each file contains the light curves compressed and a csv file, wich contains the ID of the object, its class, the number of observations and the relative path ob the light curve of each object.
An example for the Gaia DR2 dataset is shown below.
ID | Class | Path | N | |
---|---|---|---|---|
47 | 5953061724418560000 | MIRA_SR | ./LCs/5953061724418560000.dat | 25 |
49 | 4336314533849303296 | RRAB | ./LCs/4336314533849303296.dat | 19 |
3 | 4041877208419516544 | RRAB | ./LCs/4041877208419516544.dat | 14 |
7 | 1745948461173088128 | RRC | ./LCs/1745948461173088128.dat | 12 |
22 | 6199756429598744832 | DSCT_SXPHE | ./LCs/6199756429598744832.dat | 20 |
To train the model, the data has to be preprocessed first.
First, we create the Preprocesser object with the following parameters:
- max_L: The maximum number of lightcurves per class.
- min_L: The minimum number of light curves per class. If the number is not enough, the class is discarded.
- min_N: The minimum number of observations of the light curves.
- max_N: The maximum number of observations of the light curves.
- w: The size of the sliding window.
- s: The step of the sliding window.
- w_time: Whether to use the time information of the light curves.
- lc_parameters: A dictionary containing the parameters given to pandas.read_csv to read each light curve.
- num_cores: Number of threads to use in the preprocessing stage.
max_L = 40000
min_L=500
min_N=20
max_N=2000
w=4
s=2
w_time=True
lc_parameters = {'header':0, 'na_filter':False,'sep':',','usecols':['time', 'mag', 'mag_err']}
num_cores=4
P = Preprocesser(max_L=max_L,
min_L=min_L,
min_N=min_N,
max_N=max_N,
w=w,
s=s,
w_time=w_time,
lc_parameters=lc_parameters,
num_cores=num_cores
)
Once the object is created, we preprocess the data with the function prepare.
The parameters needed are:
- file_train: The csv file containing ID, path, class and number of observations, per object.
- save_dir: The path to store the preprocessed files and metadata.
- train_size: the proportion to data to be included in the training set.
- test_size: the proportion to data to be included in the test set.
- val_size: the proportion to data to be included in the validation set.
If he user wants to add their own splits, train_size, test_size and val_size must have the same structure as file_train.
t_ini = time()
file_train = './GAIA_dataset.dat'
save_dir = './Output/'
train_size = 0.7
test_size = 0.2
val_size = 0.1
P.prepare(file_train=file_train, save_dir=save_dir, train_size=train_size, test_size=test_size, val_size=val_size)
t_end = time()
print('Time elapsed: {:2.2f} minutes.'.format((t_end-t_ini)/60))
0it [00:00, ?it/s]
Reading
114442it [01:08, 1666.97it/s]
30%|██▉ | 6234/21116 [00:00<00:00, 46760.40it/s]
Processing
100%|██████████| 21116/21116 [00:00<00:00, 37066.38it/s]
100%|██████████| 40000/40000 [00:01<00:00, 27412.86it/s]
100%|██████████| 6274/6274 [00:00<00:00, 58820.91it/s]
100%|██████████| 1308/1308 [00:00<00:00, 24698.59it/s]
100%|██████████| 5178/5178 [00:00<00:00, 62557.73it/s]
100%|██████████| 40000/40000 [00:01<00:00, 32971.36it/s]
100%|██████████| 566/566 [00:00<00:00, 51979.94it/s]
Time elapsed: 1.50 minutes.
Once preprocessed, the folder save_dir will contain the serialized files Train.tfrecord, Test.tfrecord and Val.tfrecord. Additionally, it will store metadata_preprocess.json containing the metadata of the preocess and a numpy serialized file containing lc_parameters.
To preprocess another dataset without validation splits, the Preprocesser object has the function prepare_inference. The parameters needed are:
- file_train: The csv file containing ID, path, class and number of observations, per object.
- save_dir: The path to store the preprocessed files and metadata.
- metadata_path: The path of the metadata_preprocess.json file.
file_train = './GAIA_dataset_inference.dat'
save_path = './Output/Inference.tfrecord'
metadata_path = './Output/metadata_preprocess.json'
P.prepare_inference(file_train=file_train
, save_path=save_path
, metadata_path=metadata_path)
50it [00:00, 7936.54it/s]
100%|██████████| 8/8 [00:00<00:00, 953.31it/s]
100%|██████████| 24/24 [00:00<00:00, 7330.03it/s]
100%|██████████| 1/1 [00:00<00:00, 1207.34it/s]
100%|██████████| 16/16 [00:00<00:00, 4220.68it/s]
100%|██████████| 1/1 [00:00<00:00, 1313.59it/s]
Reading
Processing
To train a model, we create the object Network without any parameters.
The function train receives the dictionary train_args, and the serialized paths tfrecords_train and tfrecords_val, to the training and validation files, respectively.
It contains the following keys:
- epochs: The number of epochs used to train the model.
- size_hidden: Size of the hidden state.
- rnn_layers: Number of recurrent layers.
- lr: learning rate.
- fc_layers: Number of fully connected layers to be applied after the recurrent portion
- fc_units: Size of the fully connected layer. By default is the double of the hidden state size.
- batch_size: Size of the batch in the training stage.
- dropout: Percentaje of dropout used in the fully connected layers. Default 0.
- val_steps: Number of training steps before evaluating in the validation set.
- num_cores: Number of cores used to deserialize the information and feed the GPU.
- buffer_size: Size of the buffer which shuffles the data.
- max_to_keep: Maximum number of models to keep.
- metadata_pre_path: Path of metadata_preprocess.json file.
- buffer_size: Size of the shuffle buffer.
- num_cores: Number of threads to use in the input pipeline.
- save_dir: Path to save the training data.
In the path specified in save_dir, the folders Model to store the model checkpoints and Logs which can be visualized in tensorboard.
t_ini = time()
data_dir = './Output/'
tfrecords_train = [data_dir+'Train.tfrecord']
tfrecords_val = [data_dir+'Val.tfrecord']
train_args = {
'size_hidden' : 25,
'rnn_layers' : 2,
'fc_units' : 50,
'fc_layers' : 1,
'buffer_size' : 40000,
'epochs' : 5,
'num_cores' : 7,
'batch_size' : 2500,
'dropout' : 0.4,
'lr' : 1e-2,
'val_steps' : 1,
'max_to_keep' : 0,
'metadata_pre_path': data_dir+'metadata_preprocess.json',
'save_dir' : './Results/'
}
net = Network()
net.train(train_args, tfrecords_train, tfrecords_val)
t_end = time()
print('Time elapsed: {:2.2f} minutes.'.format((t_end-t_ini)/60))
Prediction accuracy on Train set: 32.40%
Prediction accuracy on Val set: 31.37%
INFO:tensorflow:./Results/Model/model.ckpt-0 is not in all_model_checkpoint_paths. Manually adding it.
Training ended
Time elapsed: 0.31 minutes.
Once the training ends, we can predict using the predict method.
The parameters are:
- tfrecords: List of tfrecord files. The results will be concatenated.
- model_name: Path to the model files identified with the model number. Example, './Model/model.ckpt-0'.
- metadata_train_path: Path to the train metadata, located at './Model/metadata_train.json'.
- return_h: Boolean. Wether to return the hidden state after the RNN section.
- return_p: Boolean. Wether to return the classification probability.
It returns a dictionary with keys ids, labels, pred_label. If selected, pred_probs and last_h.
tfrecords_test = [data_dir+'Test.tfrecord', data_dir+'Inference.tfrecord']
model_name = './Results/Model/model.ckpt-0'
metadata_train_path = './Results/Model/metadata_train.json'
net = Network()
predictions = net.predict(tfrecords_test, model_name, metadata_train_path, return_h=False, return_p=True)
INFO:tensorflow:Restoring parameters from ./Results/Model/model.ckpt-0
predictions = pd.DataFrame(predictions)
predictions.head()
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
ids | labels | pred_label | pred_probs | |
---|---|---|---|---|
0 | 5385985372548272128 | RRAB | RRAB | 0.191029 |
1 | 6248180369093869440 | RRC | RRAB | 0.191314 |
2 | 5951956131140637440 | RRC | RRAB | 0.224031 |
3 | 5968726840210212352 | MIRA_SR | RRAB | 0.207551 |
4 | 5927671080359624064 | MIRA_SR | RRAB | 0.198111 |