-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
325 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,324 @@ | ||
\documentclass[12pt]{article} | ||
|
||
\usepackage{verbatim,multicol,color,amsmath,amsfonts,ifdraft, graphicx, wrapfig,setspace,comment,fullpage} | ||
|
||
%\usepackage[latin1]{inputenc} | ||
%\usepackage[T1]{fontenc} | ||
%\usepackage[dvips]{graphicx} | ||
|
||
\title{STAT 544 Mid-term Exam \\ Tuesday 5 March 3:40-4:55} | ||
\author{Instructor: Jarad Niemi} | ||
\date{2024-03-05} | ||
|
||
<<options, results='hide', echo=FALSE, purl=FALSE>>= | ||
opts_chunk$set(comment=NA, | ||
fig.width=5, fig.height=3, | ||
size='scriptsize', | ||
out.width='0.8\\textwidth', | ||
fig.align='center', | ||
message=FALSE, | ||
echo=TRUE, | ||
eval=FALSE, | ||
cache=TRUE) | ||
options(width=120) | ||
@ | ||
|
||
\newenvironment{longitem}{ | ||
\begin{itemize} | ||
\setlength{\itemsep}{15pt} | ||
\setlength{\parskip}{20pt} | ||
\setlength{\parsep}{20pt} | ||
}{\end{itemize}} | ||
|
||
% \setlength{\parindent}{0pt} | ||
% \setlength{\textheight}{9in} | ||
% \setlength{\textwidth}{6.5in} | ||
% \setlength{\topmargin}{-0.125in} | ||
% \setlength{\oddsidemargin}{-.2in} | ||
% \setlength{\evensidemargin}{-.2in} | ||
% \setlength{\headsep}{0in} | ||
|
||
\newcommand{\bigbrk}{\vspace*{2in}} | ||
\newcommand{\smallbrk}{\vspace*{.3in}} | ||
|
||
\newcommand{\iid}{\stackrel{iid}{\sim}} | ||
\newcommand{\Yiid}{Y_1,\ldots,Y_n\stackrel{iid}{\sim}} | ||
|
||
|
||
\newenvironment{answer} | ||
{ {\color{blue} Answer:} } | ||
{ } | ||
|
||
\excludecomment{answer} | ||
|
||
|
||
\begin{document} | ||
|
||
Student Name: \underline{\phantom{XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX}} | ||
|
||
{\let\newpage\relax\maketitle} | ||
|
||
|
||
|
||
\bigskip | ||
|
||
|
||
\textbf{INSTRUCTIONS} | ||
|
||
\bigskip | ||
|
||
Please check to make sure you have 3 pages with writing on the front and back. | ||
|
||
\bigskip | ||
|
||
On the following pages you will find short answer questions related to the | ||
topics we covered in class for a total of 100 points. Please read the directions | ||
carefully. | ||
|
||
\bigskip | ||
|
||
You are allowed to use any resource except real-time help from another | ||
individual which includes the use of any messaging platform | ||
as well as posting on any discussion board. | ||
Cheating will not be tolerated. | ||
Anyone caught cheating will receive an automatic F on the exam. | ||
In addition the incident will be reported, and dealt with according to | ||
University's Academic Dishonesty regulations. Please refrain from talking to | ||
your peers, exchanging papers, writing utensils or other objects, or walking | ||
around the room. All of these activities can be considered cheating. | ||
{\bf If you have any questions, please raise your hand.} | ||
|
||
\bigskip | ||
|
||
You will be given only 1 hour and 15 minutes (the time allotted for the course); | ||
no extra time will be given. | ||
|
||
\bigskip | ||
|
||
|
||
Good Luck! | ||
|
||
|
||
|
||
\newpage | ||
\begin{enumerate} | ||
\item \emph{Congenital amusia}, a musical disability typically referred to as | ||
\emph{tone deafness}, affects 4\% of the population. | ||
A researcher has developed a test to identify whether a subject is tone | ||
deaf. | ||
The test involves 5 questions. | ||
For a tone deaf individual, the probability of getting each question | ||
correct is 0.2 while for a non-tone deaf individual, the probability of getting | ||
each question correct is 0.8. | ||
The researcher is willing to assume the probability of obtaining a correct | ||
answer on one question is independent of getting the correct answer on | ||
any other question. For a subject that gets 1 question correct, | ||
what is the probability the subject is tone deaf? (20 pts) | ||
|
||
\smallbrk | ||
|
||
\begin{answer} | ||
Let $D$ indicate the subject is tone deaf while $D^C$ indicates the subject | ||
is not tone deaf. | ||
Since 4\% of the population is tone deaf, we have $P(D) = 0.04 = 1-P(D^C)$. | ||
|
||
<<eval=TRUE>>= | ||
pD <- 0.04 | ||
pDc <- 1 - pD | ||
@ | ||
|
||
Let $Y$ be the number of questions the individual answered correctly. | ||
Assume $Y|D \sim Bin(5, 0.2)$ and $Y|D^C \sim Bin(5, 0.8)$. | ||
|
||
<<eval=TRUE>>= | ||
y <- 1 | ||
n <- 5 | ||
like_D <- dbinom(y, n, 0.2) | ||
like_Dc <- dbinom(y, n, 0.8) | ||
post_D <- (1 + (like_Dc * pDc) / (like_D * pD) )^-1 | ||
@ | ||
|
||
Calculate | ||
\[ \begin{array}{rl} | ||
P(D|Y=1) | ||
&= \frac{P(Y=1|D)P(D)}{P(Y=1|D)P(D)+P(Y=1|D^C)P(D^C)} \\ | ||
&= \left[ 1 + \frac{P(Y=1|D^C)P(D^C)}{P(Y=1|D)P(D)}\right]^{-1} \\ | ||
&= \left[ 1 + \frac{\Sexpr{like_Dc}\cdot \Sexpr{pDc}}{\Sexpr{like_D}\cdot \Sexpr{pD}}\right]^{-1} \\ | ||
&= \Sexpr{post_D} | ||
\end{array} \] | ||
\end{answer} | ||
|
||
|
||
|
||
\newpage | ||
\item Let $Y$ be a random variable with the following probability density function: | ||
\[ | ||
p(y|\lambda) = \frac{ky^{k-1}}{\lambda}\exp\left(-y^k/\lambda\right) | ||
\] | ||
for $y>0$ and unknown $\lambda>0$. | ||
|
||
\begin{enumerate} | ||
\item Derive Jeffreys' prior for $\lambda$. | ||
Note: $E[Y^k] = \lambda$. | ||
(20 points) | ||
|
||
\begin{answer} | ||
This pdf is an exponential family since | ||
\[ | ||
p(y|\lambda) = \exp\left(-y^k/\lambda - \log(\lambda)+\log(ky^{k-1})\right). | ||
\] | ||
Thus we can find | ||
\[ \begin{array}{rll} | ||
I(\lambda) | ||
&= -E\left[ \frac{d^2}{d\lambda^2} \log p(y|\lambda) \right] | ||
&= -E\left[ \frac{d^2}{d\lambda^2} \left( -y^k/\lambda - \log(\lambda) \right) \right] \\ | ||
&= -E\left[ \frac{d}{d\lambda} \left( y^k/\lambda^2 - 1/\lambda \right) \right] | ||
&= -E\left[ -2y^k/\lambda^3 + 1/\lambda^2 \right] \\ | ||
&= 2E[y^k]/\lambda^3 - 1/\lambda^2 | ||
&= 2\lambda/\lambda^3 - 1/\lambda^2 \\ | ||
&= 1/\lambda^2 | ||
\end{array} \] | ||
Thus Jeffreys prior is | ||
\[ | ||
p(\lambda) \propto \sqrt{|I(\lambda)|} = 1/\lambda | ||
\] | ||
\end{answer} | ||
|
||
|
||
\newpage | ||
\item Assume we have $n$ independent observations, $Y_1,\ldots,Y_n$, | ||
from the pdf on the previous page. | ||
Derive the posterior for $\lambda$ assuming $\lambda \sim IG(a,b)$, | ||
i.e. | ||
\[ | ||
p(\lambda) = \frac{b^a}{\Gamma(\alpha)} \lambda^{-a-1} \exp\left(-b/\lambda\right) | ||
\] | ||
for $\lambda>0$. (20 pts) | ||
|
||
\begin{answer} | ||
Derive | ||
\[ \begin{array}{rl} | ||
p(\lambda|y) | ||
&\propto p(\lambda) \prod_{i=1}^n p(y_i|\lambda) \\ | ||
&\propto \lambda^{-a-1} \exp\left(-b/\lambda\right) \lambda^{-n} \exp\left(-\frac{1}{\lambda} \sum_{i=1}^n y_i^k\right) \\ | ||
&= \lambda^{-(a+n)-1} \exp\left(-\frac{1}{\lambda} \left[ b + \sum_{i=1}^n y_i^k\right]\right) | ||
\end{array} \] | ||
This is the kernel of an inverse gamma and thus | ||
$\lambda|y \sim IG\left(a+n, b+\sum_{i=1}^n y_i^k\right)$. | ||
\end{answer} | ||
\end{enumerate} | ||
|
||
\newpage | ||
\item Consider the following regression model | ||
\[ | ||
Y_i = \beta_0 + \beta_1X_i + \beta_2X_i^2 + \epsilon_i, | ||
\quad \epsilon_i \stackrel{ind}{\sim} N(0,\sigma^2). | ||
\] | ||
\begin{enumerate} | ||
\item What value of $X_i$ either maximizes or minimizes $E[Y_i]$? (8 pts) | ||
(Show your reasoning.) | ||
|
||
\begin{answer} | ||
We have $E[Y] = \beta_0 + \beta_1X + \beta_2X^2$ and | ||
\[ | ||
\frac{d}{dX} E[Y] = \beta_1 + 2\beta_2X \stackrel{set}{=} 0 | ||
\implies X = -\frac{\beta_1}{2\beta_2} | ||
\] | ||
is either a maximum or a minimum. | ||
\end{answer} | ||
|
||
\vfill\vfill | ||
|
||
\item Under what condition is the value above a maximum? (4 pts) | ||
|
||
\begin{answer} | ||
\[ | ||
\frac{d^2}{dX^2} E[Y] = 2\beta_2 | ||
\] | ||
and thus $-\frac{\beta_1}{2\beta_2}$ maximizes $E[Y]$ if $\beta_2$ is negative. | ||
\end{answer} | ||
|
||
|
||
\vfill | ||
|
||
\item Suppose you have Monte Carlo samples $\beta_0^{(m)}, \beta_1^{(m)}, | ||
\beta_2^{(m)}, \sigma^{2(m)}$ for $m=1,\ldots,M$ | ||
from the joint posterior for these parameters. | ||
Explain how you would obtain an estimate of the posterior expectation for | ||
quantity in part a.? (4 pts) | ||
|
||
\begin{answer} | ||
Let $\chi = -\frac{\beta_1}{2\beta_2}$ and | ||
$\chi^{(m)} = -\frac{\beta_1^{(m)}}{2\beta_2^{(m)}}$. | ||
\[ | ||
E[\chi] \approx \frac{1}{M} \sum_{m=1}^m \chi^{(m)}. | ||
\] | ||
\end{answer} | ||
|
||
\vfill | ||
|
||
\item Explain how would you use these Monte Carlo samples to | ||
``test the hypothesis'' that the value is a maximum rather than a minimum. | ||
(4 pts) | ||
|
||
\begin{answer} | ||
Calculate | ||
\[ | ||
P(\beta_2 < 0|y) \approx | ||
\frac{1}{M} \sum_{m=1}^M \mathrm{I}\left(\beta_2^{(m)} < 0\right). | ||
\] | ||
This probability provides a measure of the value being a maximum. | ||
\end{answer} | ||
|
||
\vfill | ||
|
||
\end{enumerate} | ||
|
||
\newpage | ||
\item Consider the following model for $g=1,\ldots,G$ with independent $Y_{gi}$: | ||
\[ | ||
P(Y_{gi} = k) = 1/\theta_g\, \forall\, k=1,2,\ldots,\theta_g\in \mathbb{N}, i=1,2,\ldots,n_g | ||
\quad \theta_g \stackrel{ind}{\sim} Po(\lambda), | ||
\quad \lambda \sim Ga(a,b) | ||
\] | ||
|
||
\begin{enumerate} | ||
\item Derive the conditional posterior $p(\theta_g|\lambda,y)$ | ||
where $y$ is the set of all observations. | ||
Recall that conditional posteriors are proportional to the full posterior of | ||
all parameters. (10 pts) | ||
|
||
\begin{answer} | ||
\[ \begin{array}{rl} | ||
p(\theta_g|\lambda,y) &\propto p(\theta,\lambda|y) \\ | ||
&\propto p(y|\theta)p(\theta|\lambda) p(\lambda) \\ | ||
&= \theta_g^{-n_g} \mathrm{I}(\max_i{y_{gi}} \le \theta_g) \frac{\lambda^{\theta_g}e^{-\lambda}}{\theta_g!} \\ | ||
&\propto \frac{\lambda^{\theta_g}}{\theta_g^{n_g}\theta_g!} \mathrm{I}(\max_i{y_{gi}} \le \theta_g) | ||
\end{array} \] | ||
\end{answer} | ||
|
||
\vfill | ||
|
||
\item Derive the conditional posterior $p(\lambda|\theta,y)$ | ||
where $\theta = (\theta_1,\ldots,\theta_G)$. (10 pts) | ||
|
||
\begin{answer} | ||
Let $G\overline{\theta} = \sum_{g=1}^G \theta_g$. | ||
\[ \begin{array}{rl} | ||
p(\lambda|\theta,y) &\propto p(\theta,\lambda|y) \\ | ||
&\propto p(\theta|\lambda) p(\lambda) \\ | ||
&\propto \lambda^{G\overline{\theta}}e^{-G\lambda} \lambda^{a-1} e^{-b\lambda} \\ | ||
&= \lambda^{a+G\overline{\theta}-1} e^{-(b+G)\lambda} | ||
\end{array} \] | ||
This is the kernel of a Gamma, so $\lambda|\theta,y \sim Ga(a+G\overline{\theta}, b+G)$ | ||
and is clearly independent of $y$. | ||
\end{answer} | ||
|
||
\vfill | ||
|
||
\end{enumerate} | ||
\end{enumerate} | ||
\end{document} | ||
|
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters