-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit c04efd8
Showing
8 changed files
with
519 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
.DS_Store | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Distribution / packaging | ||
.Python | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
.hypothesis/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
local_settings.py | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# celery beat schedule file | ||
celerybeat-schedule | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# Environments | ||
.env | ||
.venv | ||
env/ | ||
venv/ | ||
ENV/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
MIT License | ||
|
||
Copyright (c) 2017 JINGXI LIANG | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# Pointer Networks in Tensorflow | ||
|
||
This is an implementation of [Pointer Networks](https://arxiv.org/abs/1506.03134) to solve the [Convex Hull](https://en.wikipedia.org/wiki/Convex_hull) problem. Stacking RNN layers is supported. | ||
|
||
 | ||
|
||
## Environments | ||
|
||
* Python 3.x | ||
* TensorFlow 1.2.x | ||
|
||
## Data | ||
|
||
Convex Hull datasets such as "convex hull 5" and "convex hull 5-50" can be downloaded at [Link](https://drive.google.com/drive/folders/0B2fg8yPGn2TCMzBtS0o4Q2RJaEU). | ||
|
||
## Usage | ||
|
||
training | ||
|
||
$ python convex_hull.py --ARG=VALUE | ||
|
||
visualizing | ||
|
||
$ tensorboard --logdir=DIR | ||
|
||
## Results | ||
|
||
Training on convex hull 5 | ||
|
||
 | ||
|
||
Training on convex hull 5-50 | ||
|
||
 |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
import tensorflow as tf | ||
import numpy as np | ||
import pointer_net | ||
import time | ||
import os | ||
|
||
tf.app.flags.DEFINE_integer("batch_size", 128,"Batch size.") | ||
tf.app.flags.DEFINE_integer("max_input_sequence_len", 5, "Maximum input sequence length.") | ||
tf.app.flags.DEFINE_integer("max_output_sequence_len", 7, "Maximum output sequence length.") | ||
tf.app.flags.DEFINE_integer("rnn_size", 128, "RNN unit size.") | ||
tf.app.flags.DEFINE_integer("attention_size", 128, "Attention size.") | ||
tf.app.flags.DEFINE_integer("num_layers", 1, "Number of layers.") | ||
tf.app.flags.DEFINE_float("learning_rate", 0.001, "Learning rate.") | ||
tf.app.flags.DEFINE_float("max_gradient_norm", 5.0, "Maximum gradient norm.") | ||
tf.app.flags.DEFINE_boolean("forward_only", False, "Forward Only.") | ||
tf.app.flags.DEFINE_string("log_dir", "./log", "Log directory") | ||
tf.app.flags.DEFINE_string("data_path", "./data/convex_hull_5_test.txt", "Data path.") | ||
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 200, "frequence to do per checkpoint.") | ||
|
||
FLAGS = tf.app.flags.FLAGS | ||
|
||
class ConvexHull(object): | ||
def __init__(self, forward_only): | ||
self.forward_only = forward_only | ||
self.graph = tf.Graph() | ||
with self.graph.as_default(): | ||
self.sess = tf.Session() | ||
self.build_model() | ||
self.read_data() | ||
|
||
|
||
def read_data(self): | ||
with open(FLAGS.data_path,'r') as file: | ||
recs = file.readlines() | ||
inputs = [] | ||
enc_input_weights = [] | ||
outputs = [] | ||
dec_input_weights = [] | ||
|
||
for rec in recs: | ||
inp, outp = rec[:-2].split(' output ') | ||
inp = inp.split(' ') | ||
outp = outp.split(' ') | ||
|
||
enc_input = [] | ||
for t in inp: | ||
enc_input.append(float(t)) | ||
enc_input_len = len(enc_input)//2 | ||
enc_input += [0]*((FLAGS.max_input_sequence_len-enc_input_len)*2) | ||
enc_input = np.array(enc_input).reshape([-1,2]) | ||
inputs.append(enc_input) | ||
weight = np.zeros(FLAGS.max_input_sequence_len) | ||
weight[:enc_input_len]=1 | ||
enc_input_weights.append(weight) | ||
|
||
output=[pointer_net.START_ID] | ||
for i in outp: | ||
# Add 2 to value due to the sepcial tokens | ||
output.append(int(i)+2) | ||
output.append(pointer_net.END_ID) | ||
dec_input_len = len(output)-1 | ||
output += [pointer_net.PAD_ID]*(FLAGS.max_output_sequence_len-dec_input_len) | ||
output = np.array(output) | ||
outputs.append(output) | ||
weight = np.zeros(FLAGS.max_output_sequence_len) | ||
weight[:dec_input_len]=1 | ||
dec_input_weights.append(weight) | ||
|
||
self.inputs = np.stack(inputs) | ||
self.enc_input_weights = np.stack(enc_input_weights) | ||
self.outputs = np.stack(outputs) | ||
self.dec_input_weights = np.stack(dec_input_weights) | ||
print("Load inputs: " +str(self.inputs.shape)) | ||
print("Load enc_input_weights: " +str(self.enc_input_weights.shape)) | ||
print("Load outputs: " +str(self.outputs.shape)) | ||
print("Load dec_input_weights: " +str(self.dec_input_weights.shape)) | ||
|
||
|
||
def get_batch(self): | ||
data_size = self.inputs.shape[0] | ||
sample = np.random.choice(data_size,FLAGS.batch_size,replace=True) | ||
return self.inputs[sample],self.enc_input_weights[sample],\ | ||
self.outputs[sample], self.dec_input_weights[sample] | ||
|
||
def build_model(self): | ||
with self.graph.as_default(): | ||
# Build model | ||
self.model = pointer_net.PointerNet(batch_size=FLAGS.batch_size, | ||
max_input_sequence_len=FLAGS.max_input_sequence_len, | ||
max_output_sequence_len=FLAGS.max_output_sequence_len, | ||
rnn_size=FLAGS.rnn_size, | ||
attention_size=FLAGS.attention_size, | ||
num_layers=FLAGS.num_layers, | ||
learning_rate=FLAGS.learning_rate, | ||
max_gradient_norm=FLAGS.max_gradient_norm, | ||
forward_only=self.forward_only) | ||
# Prepare Summary writer | ||
self.writer = tf.summary.FileWriter(FLAGS.log_dir + '/train',self.sess.graph) | ||
# Try to get checkpoint | ||
ckpt = tf.train.get_checkpoint_state(FLAGS.log_dir) | ||
if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path): | ||
print("Load model parameters from %s" % ckpt.model_checkpoint_path) | ||
self.model.saver.restore(self.sess, ckpt.model_checkpoint_path) | ||
else: | ||
print("Created model with fresh parameters.") | ||
self.sess.run(tf.global_variables_initializer()) | ||
|
||
|
||
def train(self): | ||
step_time = 0.0 | ||
loss = 0.0 | ||
current_step = 0 | ||
|
||
while True: | ||
start_time = time.time() | ||
inputs,enc_input_weights, outputs, dec_input_weights = \ | ||
self.get_batch() | ||
summary, step_loss, predicted_ids_with_logits, targets, debug_var = \ | ||
self.model.step(self.sess, inputs, enc_input_weights, outputs, dec_input_weights) | ||
step_time += (time.time() - start_time) / FLAGS.steps_per_checkpoint | ||
loss += step_loss / FLAGS.steps_per_checkpoint | ||
current_step += 1 | ||
|
||
#DEBUG PART | ||
#print("debug") | ||
#print(debug_var) | ||
#return | ||
#/DEBUG PART | ||
|
||
#Time to print statistic and save model | ||
if current_step % FLAGS.steps_per_checkpoint == 0: | ||
with self.sess.as_default(): | ||
gstep = self.model.global_step.eval() | ||
print ("global step %d step-time %.2f loss %.2f" % (gstep, step_time, loss)) | ||
#Write summary | ||
self.writer.add_summary(summary, gstep) | ||
#Randomly choose one to check | ||
sample = np.random.choice(FLAGS.batch_size,1)[0] | ||
print("="*20) | ||
print("Predict: "+str(np.array(predicted_ids_with_logits[1][sample]).reshape(-1))) | ||
print("Target : "+str(targets[sample])) | ||
print("="*20) | ||
checkpoint_path = os.path.join(FLAGS.log_dir, "convex_hull.ckpt") | ||
self.model.saver.save(self.sess, checkpoint_path, global_step=self.model.global_step) | ||
step_time, loss = 0.0, 0.0 | ||
|
||
def eval(self): | ||
pass | ||
|
||
def run(self): | ||
if self.forward_only: | ||
self.eval() | ||
else: | ||
self.train() | ||
|
||
def main(_): | ||
convexHull = ConvexHull(FLAGS.forward_only) | ||
convexHull.run() | ||
|
||
if __name__ == "__main__": | ||
tf.app.run() |
Oops, something went wrong.