Skip to content
View joaquimtimoteo's full-sized avatar
🏠
Trabalhando em casa
🏠
Trabalhando em casa

Block or report joaquimtimoteo

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
joaquimtimoteo/README.md
<h1 align="center">
  <img src="https://img.icons8.com/color/96/python--v1.png" width="70"/> 
  <img src="https://img.icons8.com/fluency/96/r-project.png" width="70"/>
  <br/> Joaquim Timóteo | Software Engineer & Data Science Architect 
</h1>

```python
class DataScienceStack:
    def __init__(self):
        self.ml_libraries = ['TensorFlow', 'PyTorch', 'Scikit-learn']
        self.visualization = ['Matplotlib', 'Seaborn', 'Plotly']
        self.data_tools = ['Pandas', 'NumPy', 'Spark']
        
    def deploy_model(self):
        return "ML Pipelines | API Integration | Cloud Deployment"
# R STATISTICAL EXPERTISE
data_science_stack <- list(
  statistical_models = c("GLM", "Time Series", "Bayesian"),
  visualization = c("ggplot2", "Shiny", "Lattice"),
  data_manipulation = c("dplyr", "tidyr", "data.table")
)

deploy_analysis <- function() {
  return("Advanced Statistical Modeling | Report Generation | RMarkdown")
}

🔁 Data Workflow Integration

Python Pipeline

graph LR
A[Data Collection] --> B(Pandas Preprocessing)
B --> C{Model Training}
C -->|Python| D[Scikit-learn]
C -->|Deep Learning| E[TensorFlow]
D --> F[Flask API]
E --> F
Loading

R Pipeline

graph LR
A[Data Cleaning] --> B(dplyr Transformation)
B --> C{Analysis Type}
C -->|Statistical| D[GLM Models]
C -->|Reporting| E[RMarkdown]
D --> F[Shiny Dashboard]
E --> F
Loading

📊 Multi-Language Toolkit

Task Python Solution R Solution
Data Manipulation pd.DataFrame.pivot() dplyr::pivot_wider()
Visualization sns.heatmap() ggplot2::geom_tile()
Modeling sklearn.ensemble caret::train()
Deployment Flask REST API Shiny Web App

🧪 Code Showcase

Python ML Example

from sklearn.ensemble import RandomForestClassifier

def train_model(X, y):
    model = RandomForestClassifier(n_estimators=100)
    model.fit(X, y)
    return model

# Feature Engineering Pipeline
X_processed = Pipeline([
    ('imputer', SimpleImputer()),
    ('scaler', StandardScaler())
]).fit_transform(X)

R Statistical Analysis

library(caret)

train_model <- function(data) {
  control <- trainControl(method = "cv", number = 5)
  model <- train(
    Class ~ .,
    data = data,
    method = "glmnet",
    trControl = control
  )
  return(model)
}

# Advanced Visualization
ggplot(mtcars, aes(x = wt, y = mpg)) + 
  geom_point() + 
  geom_smooth(method = "lm")

📦 Package Development

Python:

# PyPI Package Template
$ poetry new ds_utils
$ python -m build

R:

# CRAN-ready Package
$ devtools::create("rDStools")
$ devtools::check()

📚 Learning Resources

# Python Learning Path
resources = {
    'books': ['Python for Data Analysis', 'Fluent Python'],
    'courses': ['Advanced ML with Python', 'PySpark Essentials']
}
# R Learning Path
resources <- list(
  books = c("R for Data Science", "Advanced R"),
  courses = c("Shiny Masterclass", "R Production Systems")
)

🌐 Connect in Your Preferred Language

# Python Style
def connect():
    platforms = {
        'GitHub': 'https://github.com/joaquimtimoteo/',
        'LinkedIn': 'www.linkedin.com/in/joaquim-timóteo-619957227'
    }
    return platforms
# R Style
connect <- function() {
  list(
    Kaggle = "https://kaggle.com/joaquimtimoteo",
    RPubs = "https://rpubs.com/joaquimtimoteo"
  )
}
📌 Combined Skills Matrix
Skill Category Python Implementation R Implementation
Data Wrangling Pandas/Numpy dplyr/tidyr
Visualization Matplotlib/Plotly ggplot2/Plotly
Modeling Scikit-learn/TensorFlow caret/Tidymodels
Reporting Jupyter Notebooks RMarkdown/Quarto
Deployment Flask/Django Shiny/plumber
```

Pinned Loading

  1. applevisionpro_clonning applevisionpro_clonning Public

    O projeto "Apple Vision Pro-Clonning" tem como objetivo criar um website que explore e reproduza as capacidades de visão computacional da Apple. Neste website, os usuários poderão experimentar as f…

  2. CorsoWebsite_complete CorsoWebsite_complete Public

    Bootstrap website for training courses, workshops, seminars, etc. It has a mixed design with both light and dark colors and a modern look.

    HTML

  3. react.pizza.menu react.pizza.menu Public

    react.pizza.menu

  4. EbookWebsite EbookWebsite Public

    Bootstrap website for downloading a free E-book. This website has a light, business-oriented design.

    HTML

  5. myportifolio2 myportifolio2 Public

    This is a dark-light contrast website for a portfolio. It is related to being a web developer, but can be edited to be for any type of portfolio. It includes a bit of custom JavaScript for the type…

    HTML