Skip to content
View joaquimtimoteo's full-sized avatar
🏠
Trabalhando em casa
🏠
Trabalhando em casa

Block or report joaquimtimoteo

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
joaquimtimoteo/README.md
Python R

JOAQUIM TIMÓTEO

Bilingual Data Architect: Python × R

GitHub LinkedIn Kaggle


// ARCHITECTING DATA SOLUTIONS

def expertise():
    return {
        "machine_learning": {
            "deep": ["TensorFlow", "PyTorch"],
            "traditional": ["scikit-learn", "XGBoost"]
        },
        "engineering": {
            "data": ["Pandas", "NumPy", "Spark"],
            "cloud": ["AWS", "GCP", "Azure"]
        },
        "visualization": ["Plotly", "Seaborn", "D3.js"]
    }

// R ANALYTICS FORGE

analytics_mastery <- list(
  statistical = c("Bayesian", "Time Series"),
  interactive = c("Shiny", "htmlwidgets"),
  reports = c("RMarkdown", "Quarto"),
  packages = c("tidyverse", "data.table")
)

⚡ BILINGUAL DATA SCIENCE PIPELINE ⚡

graph LR
    D[Data] --> P{Analysis Path}
    P -->|Statistical Modeling| R[R Ecosystem]
    P -->|ML/Deep Learning| PY[Python Stack]
    R --> V{Visualization}
    PY --> V
    V -->|Interactive| I[Web Dashboards]
    V -->|Static| S[Reports/Notebooks]
    I --> DL[Deployment]
    S --> DL
    
    classDef python fill:#3776AB,color:white;
    classDef r fill:#276DC3,color:white;
    classDef deploy fill:#232F3E,color:white;
    
    class PY python;
    class R r;
    class DL deploy;
Loading

🔬 CODE CRAFTSMANSHIP

# Python ML Pipeline Architect
def build_robust_pipeline(data, target):
    # Define preprocessing steps
    numeric_transformer = Pipeline(steps=[
        ('imputer', SimpleImputer(strategy='median')),
        ('scaler', StandardScaler())
    ])
    
    categorical_transformer = Pipeline(steps=[
        ('imputer', SimpleImputer(strategy='constant')),
        ('encoder', OneHotEncoder(handle_unknown='ignore'))
    ])
    
    # Column transformer for mixed data types
    preprocessor = ColumnTransformer(
        transformers=[
            ('num', numeric_transformer, selector_num),
            ('cat', categorical_transformer, selector_cat)
        ])
    
    # Create production-ready pipeline
    model_pipeline = Pipeline(steps=[
        ('preprocessor', preprocessor),
        ('classifier', RandomForestClassifier(
            n_estimators=100,
            max_depth=None,
            min_samples_split=2,
            random_state=42
        ))
    ])
    
    # Train with cross-validation
    return model_pipeline.fit(data, target)

📊 STATISTICAL MASTERY

# Advanced Bayesian Analysis in R
advanced_modeling <- function(data) {
  # Bayesian hierarchical model with Stan
  model <- brm(
    formula = outcome ~ predictor1 + predictor2 + 
      (1 + predictor1 | group),
    data = data,
    family = gaussian(),
    prior = c(
      prior(normal(0, 10), class = "b"),
      prior(cauchy(0, 2), class = "sd")
    ),
    chains = 4,
    iter = 2000,
    warmup = 1000,
    cores = 4
  )
  
  # Generate posterior predictions
  predictions <- posterior_predict(
    model, 
    newdata = prediction_data
  )
  
  # Return model and diagnostics
  return(list(
    model = model,
    diagnostics = pp_check(model),
    predictions = predictions
  ))
}

🔮 EMERGING TECHNOLOGY FOCUS

ML Ops MLflow Kubeflow Docker CI/CD
Distributed Computing Dask Spark Ray Kubernetes
Deep Learning PyTorch TensorFlow JAX ONNX
Data Engineering Airflow DBT Snowflake BigQuery

📈 PROJECT ARCHITECTURE SHOWCASE

🧠 Recommendation Engine

graph TD
    A[User Behavior Data] --> B[Feature Engineering]
    B --> C[Collaborative Filtering]
    B --> D[Content-Based Filtering]
    C --> E[Hybrid Model]
    D --> E
    E --> F[A/B Testing]
    F --> G[Production API]
    
    style A fill:#f9f,stroke:#333,stroke-width:2px
    style E fill:#bbf,stroke:#333,stroke-width:2px
    style G fill:#bfb,stroke:#333,stroke-width:2px
Loading

📊 Time Series Forecasting

graph TD
    A[Historical Data] --> B[Trend Decomposition]
    B --> C[Seasonal Analysis]
    B --> D[ARIMA Modeling]
    B --> E[Prophet]
    B --> F[LSTM Networks]
    C & D & E & F --> G[Ensemble Methods]
    G --> H[Prediction API]
    
    style A fill:#f9f,stroke:#333,stroke-width:2px
    style G fill:#bbf,stroke:#333,stroke-width:2px
    style H fill:#bfb,stroke:#333,stroke-width:2px
Loading

✨ CONTRIBUTIONS WELCOME ✨

def collaborate():
    domains = ["MLOps", "Generative AI", "Causal Inference", "Bayesian Modeling"]
    interests = ["Open Source", "Mentorship", "Research", "Teaching"]
    
    return "Always open to collaborating on innovative data science projects!"

📫 Reach out for collaborations, consulting, or just to chat about data science

Pinned Loading

  1. applevisionpro_clonning applevisionpro_clonning Public

    O projeto "Apple Vision Pro-Clonning" tem como objetivo criar um website que explore e reproduza as capacidades de visão computacional da Apple. Neste website, os usuários poderão experimentar as f…

  2. CorsoWebsite_complete CorsoWebsite_complete Public

    Bootstrap website for training courses, workshops, seminars, etc. It has a mixed design with both light and dark colors and a modern look.

    HTML

  3. react.pizza.menu react.pizza.menu Public

    react.pizza.menu

  4. EbookWebsite EbookWebsite Public

    Bootstrap website for downloading a free E-book. This website has a light, business-oriented design.

    HTML

  5. myportifolio2 myportifolio2 Public

    This is a dark-light contrast website for a portfolio. It is related to being a web developer, but can be edited to be for any type of portfolio. It includes a bit of custom JavaScript for the type…

    HTML