Skip to content

Commit

Permalink
Added a __Support Vector Machine__ model trained for face recognition
Browse files Browse the repository at this point in the history
Signed-off-by: Ayush Joshi <[email protected]>
  • Loading branch information
joshiayush committed Dec 9, 2023
1 parent 2f8168e commit e3bfaae
Show file tree
Hide file tree
Showing 2 changed files with 602 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
# Support Vector Machines

An example of **SVM** in action.

```python
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.svm import SVC
from sklearn.metrics import (classification_report, confusion_matrix)
from sklearn.pipeline import make_pipeline
from sklearn.datasets import fetch_lfw_people
from sklearn.decomposition import PCA as RandomizedPCA
from sklearn.model_selection import (train_test_split, GridSearchCV)
```

```python
faces = fetch_lfw_people(min_faces_per_person=60, )
```

```python
faces.target_names, faces.images.shape
```

###### Output


```
(array(['Ariel Sharon', 'Colin Powell', 'Donald Rumsfeld', 'George W Bush',
'Gerhard Schroeder', 'Hugo Chavez', 'Junichiro Koizumi',
'Tony Blair'], dtype='<U17'),
(1348, 62, 47))
```

Let's plot these images to check what we're working with:

```python
fig, ax = plt.subplots(3, 5)
fig.tight_layout()
for i, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='bone')
axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]])
```

###### Output


Each image contains `[62×47]` or nearly `3,000` pixels. We could proceed by simply using each pixel value as a feature, but often it is more effective to use some sort of preprocessor to extract more meaningful features; here we will use a principal component analysis to extract 150 fundamental components to feed into our support vector machine classifier. We can do this most straightforwardly by packaging the preprocessor and the
classifier into a single pipeline:

```python
pca = RandomizedPCA(n_components=150, whiten=True, random_state=42)
svc = SVC(kernel='rbf', class_weight='balanced')
model = make_pipeline(pca, svc)
```

For the sake of testing our classifier output, we will split the data into a training and testing set:

```python
Xtrain, Xtest, ytrain, ytest = train_test_split(faces.data, faces.target, random_state=42)
```

```python
param_grid = {
'svc__C': [1, 5, 10, 50],
'svc__gamma': [0.0001, 0.0005, 0.001, 0.005],
}
grid = GridSearchCV(model, param_grid)
```

```python
%time grid.fit(Xtrain, ytrain)
```

###### Output


```
CPU times: user 1min 5s, sys: 48 s, total: 1min 53s
Wall time: 1min 8s
```

```
GridSearchCV(estimator=Pipeline(steps=[('pca',
PCA(n_components=150, random_state=42,
whiten=True)),
('svc',
SVC(C=5, class_weight='balanced',
gamma=0.001))]),
param_grid={'svc__C': [1, 5, 10, 50],
'svc__gamma': [1e-05, 0.0001, 0.0005, 0.001, 0.005]})
```

```python
grid.best_params_
```

###### Output


```
{'svc__C': 5, 'svc__gamma': 0.001}
```

The optimal values fall toward the middle of our grid; if they fell at the edges, we would want to expand the grid to make sure we have found the true optimum.

Now with this cross-validated model, we can predict the labels for the test data, which the model has not yet seen:

```python
model = grid.best_estimator_
y_pred = model.predict(Xtest)
```

Let’s take a look at a few of the test images along with their predicted values

```python
fig, ax = plt.subplots(3, 5)
fig.tight_layout()
for i, axi in enumerate(ax.flat):
axi.imshow(Xtest[i].reshape(62, 47), cmap='bone')
axi.set(xticks=[], yticks=[])
axi.set_ylabel(faces.target_names[y_pred[i]].split()[-1],
color='black' if y_pred[i] == ytest[i] else 'red')
fig.suptitle('Predicted Names; Incorrect Labels in Red', size=14);
```

###### Output


Let's list some recovery statistics label by label.

```python
print(classification_report(ytest, y_pred, target_names=faces.target_names))
```

###### Output


```
precision recall f1-score support
Ariel Sharon 0.65 0.87 0.74 15
Colin Powell 0.83 0.88 0.86 68
Donald Rumsfeld 0.70 0.84 0.76 31
George W Bush 0.97 0.80 0.88 126
Gerhard Schroeder 0.76 0.83 0.79 23
Hugo Chavez 0.93 0.70 0.80 20
Junichiro Koizumi 0.86 1.00 0.92 12
Tony Blair 0.82 0.98 0.89 42
accuracy 0.85 337
macro avg 0.82 0.86 0.83 337
weighted avg 0.86 0.85 0.85 337
```

Let's look at the confusion matrix between these classes:

```python
mat = confusion_matrix(ytest, y_pred)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
xticklabels=faces.target_names, yticklabels=faces.target_names)
plt.xlabel('true label')
plt.ylabel('predicted label');
```

###### Output

Large diffs are not rendered by default.

0 comments on commit e3bfaae

Please sign in to comment.