-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
145 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
#----------------------------------------------------------------------- | ||
#' @title COM-Poisson probability mass function | ||
#' @param y a positive integer value. | ||
#' @param mu the (approximate) mean parameter. | ||
#' @param nu the dispersion parameter. | ||
#' @param log logical. If \code{TRUE} it returns the logarithm of pmf. | ||
#' @author Eduardo Jr <[email protected]> | ||
#' @export | ||
#' | ||
dcmp <- function(y, mu, nu, log = FALSE) { | ||
loglambda <- suppressWarnings( | ||
nu * log(mu + (nu - 1) / (2 * nu)) | ||
) | ||
# Get the normalizing constants | ||
logz <- compute_logz(loglambda, mu, nu) | ||
# Compute the loglikelihood | ||
pmf <- y * loglambda - nu * lfactorial(y) - logz | ||
if (!log) pmf <- exp(pmf) | ||
return(pmf) | ||
} | ||
|
||
#----------------------------------------------------------------------- | ||
#' @title Gamma-count probability mass function | ||
#' @param y a positive integer value. | ||
#' @param kappa the (asymptote) mean parameter. | ||
#' @param alpha the dispersion parameter. | ||
#' @param log logical. If \code{TRUE} it returns the logarithm of pmf. | ||
#' @author Eduardo Jr <[email protected]> | ||
#' @export | ||
#' | ||
dgct <- function (y, kappa, alpha, log = FALSE) { | ||
alpha_kappa <- alpha * kappa | ||
alpha_y <- alpha * y | ||
pmf <- pgamma(1L, shape = alpha_y, rate = alpha_kappa) - | ||
pgamma(1L, shape = alpha_y + alpha, rate = alpha_kappa) | ||
if (log) pmf <- log(pmf) | ||
return(pmf) | ||
} | ||
|
||
#----------------------------------------------------------------------- | ||
#' @title Discrete Weibull probability mass function | ||
#' @param y a positive integer value. | ||
#' @param q the "location" parameter (\code{0<q<1}). | ||
#' @param rho the dispersion parameter. | ||
#' @param log logical. If \code{TRUE} it returns the logarithm of pmf. | ||
#' @author Eduardo Jr <[email protected]> | ||
#' @export | ||
#' | ||
ddwe <- function(y, q, rho, log = FALSE) { | ||
logq <- log(q) | ||
pmf <- exp(y^rho * logq) - exp((y + 1)^rho * logq) | ||
if (log) pmf <- log(pmf) | ||
return(pmf) | ||
} | ||
|
||
#----------------------------------------------------------------------- | ||
#' @title Generalized Poisson probability mass function | ||
#' @param y a positive integer value. | ||
#' @param mu the mean parameter. | ||
#' @param sigma the dispersion parameter. | ||
#' @param log logical. If \code{TRUE} it returns the logarithm of pmf. | ||
#' @author Eduardo Jr <[email protected]> | ||
#' @export | ||
#' | ||
dgpo <- function (y, mu, sigma, log = FALSE) { | ||
sigma_mu <- 1 + sigma * mu | ||
sigma_y <- 1 + sigma * y | ||
lsigma_mu <- suppressWarnings(log(sigma_mu)) | ||
lsigma_y <- suppressWarnings(log(sigma_y)) | ||
sy_sm <- suppressWarnings(sigma_y / sigma_mu) | ||
pmf <- y * (log(mu) - lsigma_mu) + | ||
(y - 1) * lsigma_y - mu * | ||
(sy_sm) - lfactorial(y) | ||
pmf[is.nan(pmf)] <- -Inf | ||
if (!log) pmf <- exp(pmf) | ||
return(pmf) | ||
} | ||
|
||
#----------------------------------------------------------------------- | ||
#' @title Double Poisson probability mass function | ||
#' @param y a positive integer value. | ||
#' @param mu the (approximate) mean parameter. | ||
#' @param phi the dispersion parameter. | ||
#' @param log logical. If \code{TRUE} it returns the logarithm of pmf. | ||
#' @author Eduardo Jr <[email protected]> | ||
#' @export | ||
#' | ||
ddpo <- function (y, mu, phi, log = FALSE) { | ||
# Get the normalizing constants | ||
logk <- compute_logk(mu, log(mu), phi, log(phi)) | ||
ly <- log(y); ly[y == 0] <- 1 | ||
pmf <- -0.5 * log(phi) - mu/phi - y + y * ly - lfactorial(y) + | ||
(y/phi) * (1 + log(mu) - ly) - logk | ||
if (!log) pmf <- exp(pmf) | ||
return(pmf) | ||
} | ||
|
||
#----------------------------------------------------------------------- | ||
#' @title Poisson-Tweedie probability mass function | ||
#' @param y a positive integer value. | ||
#' @param mu the mean parameter. | ||
#' @param omega the dispersion parameter. | ||
#' @param power the power parameter. | ||
#' @param npts number of points in the gaussian quadrature. | ||
#' @param log logical. If \code{TRUE} it returns the logarithm of pmf. | ||
#' @author Eduardo Jr <[email protected]> | ||
#' @importFrom stats dpois | ||
#' @export | ||
#' | ||
dptw <- function(y, mu, omega, power, npts = 100L, log = FALSE) { | ||
pts <- statmod::gauss.quad(npts, kind = "laguerre") | ||
pjoint <- function(y, z) { | ||
dpois(y, lambda = z) * | ||
tweedie::dtweedie(z, mu = mu, phi = omega, power = power) | ||
} | ||
pmarginal <- function(y) { | ||
vapply(y, FUN = function(yi) { | ||
fpts <- pjoint(y = yi, z = pts$nodes) | ||
sum(pts$weights * fpts / exp(-pts$nodes)) | ||
}, FUN.VALUE = numeric(1)) | ||
} | ||
out <- vapply(y, FUN = function(yi) { | ||
if (yi == 0) { | ||
se <- sqrt(mu + omega * mu^power) | ||
yrange <- 1:min(1000, round(mu + 10 * se)) | ||
probs <- pmarginal(yrange) | ||
out <- 1 - sum(probs) | ||
} else { | ||
pmarginal(yi) | ||
} | ||
}, FUN.VALUE = numeric(1)) | ||
if (log) out <- log(out) | ||
return(out) | ||
} |