在当下信息爆炸的时代,唯一不缺的就是各种学习资源:
- 《R 语言资料卡片》中文版 https://github.com/sunbjt/r_reference
- 《R导论》中文版 https://github.com/DingGuohui/R-intro-cn
- 《R 语言高频问题》https://cran.r-project.org/doc/contrib/Liu-FAQ.pdf 由刘思喆收集自中文论坛,非 Kurt Hornik 维护的官方文档
- 《R 和 tidyverse 快速入门》 https://github.com/saghirb/Getting-Started-in-R Saghir Bashir
- 《R 和 tinyverse 快速入门》 https://github.com/eddelbuettel/gsir-te Dirk Eddelbuettel
- 《数据科学卡片》https://github.com/aaronwangy/Data-Science-Cheatsheet Aaron Wang
- 《S Poetry》Patrick Burns https://www.burns-stat.com/pages/Spoetry/Spoetry.pdf
- 《The R Inferno》Patrick Burns https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
适合入门的书籍:
- 《Exploratory Data Analysis with R》探索性分析与 R 语言 Roger D. Peng https://bookdown.org/rdpeng/exdata/
- 《R Programming for Data Science》数据科学中的 R 语言 Roger D. Peng https://bookdown.org/rdpeng/rprogdatascience/
- 《Efficient R programming》高效的 R 语言编程 Colin Gillespie 和 Robin Lovelace https://csgillespie.github.io/efficientR/
- 《An Introduction to R》 R 语言入门 Alex Douglas, Deon Roos, Francesca Mancini, Ana Couto 和 David Lusseau https://intro2r.com/
- 《The Book of R》https://web.itu.edu.tr/~tokerem/The_Book_of_R.pdf
- 《The Art of R Programming》http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf
- 《Hands-On Programming with R》 https://web.itu.edu.tr/~tokerem/Hands-On_R.pdf
- 《Learning R》 https://web.itu.edu.tr/~tokerem/Learning_R.pdf
- 《R for Data Science》Hadley Wickham and Garrett Grolemund http://r4ds.had.co.nz/
- 《Data Science for Psychologists》心理学家的数据科学 https://bookdown.org/hneth/ds4psy/
- 《Big Book of R》R 语言学习资源集散地 https://bigbookofr.netlify.app/
- 《Data Science in Education Using R》数据科学在教育领域中的应用 https://datascienceineducation.com/
- 《Statistical Modeling and Computation for Educational Scientists》统计建模和计算在教育科学中的应用 https://zief0002.github.io/modeling/
- 《Learning statistics with R》学习统计与 R 语言 https://learningstatisticswithr.com/
- 《R Notes for Professionals book》https://goalkicker.com/RBook/
- 《R for Geographic Data Science》Stefano De Sabbata https://sdesabbata.github.io/r-for-geographic-data-science/
- 《Improving Your Statistical Inferences》Daniël Lakens https://lakens.github.io/statistical_inferences/
- 《数据科学入门》 Introduction to Data Science: Data Analysis and Prediction Algorithms with R Rafael A. Irizarry
- John H. Maindonald Using R for Data Analysis and Graphics 后来演变为 Data Analysis and Graphics Using R-3rd-2010 数据集和函数存放在 DAAG 包里,第四版正在进行中,手稿可在作者主页上获得。
- 应用时间序列分析与R语言 Time Series Analysis with Applications in R
- 时间序列预测:原理与实践 Forecasting: Principles and Practice Rob J Hyndman
- 时间序列分析及其应用 Time Series Analysis and Its Applications: With R Examples
- 线性模型与R语言 Extending the Linear Model with R Julian Faraway
- 量化经济学与R语言 Introduction to Econometrics with R
- 数据建模与 R Modeling with Data: Tools and Techniques for Scientific Computing 下载地址 PDF
- 统计反思 Statistical Rethinking Statistical Rethinking Resources
- 统计做错了 Statistics Done Wrong
- 回归模型策略 Regression Modeling Strategies
- 应用预测建模 Applied Predictive Modeling
- 应用回归分析与广义线性模型 Applied Regression Analysis and Generalized Linear Models
- 数据融合,理论、方法和应用 Data Fusion Theory, Methods, and Applications
- 《学习统计与 R 语言》 Learning Statistics with R 网页版 PDF
- An Introduction to Bayesian Thinking: A Companion to the Statistics with R Course
- 统计计算 李东风
- R语言教程 李东风
- 金融时间序列分析讲义 李东风
- 应用时间序列分析备课笔记 李东风
与数据可视化相关:
- 《ggplot2: Elegant Graphics for Data Analysis, 3rd》数据分析与图形艺术 Hadley Wickham https://ggplot2-book.org/
- 《Fundamentals of Data Visualization》数据可视化精要 Claus O. Wilke https://serialmentor.com/dataviz/
- 《Interactive web-based data visualization with R, plotly, and shiny》交互式数据可视化 Carson Sievert https://plotly-r.com/
- 《Data Visualization: A Practical Introduction》 数据可视化:实践指南 Kieran Healy https://socviz.co/
- 《数据可视化与 R 语言》 Data Visualisation with R: 100 Examples
- 《R 语言绘图手册》 R Graphics Cookbook PDF
- 《数据分析与图形艺术》 ggplot2: Elegant Graphics for Data Analysis
- 《可视化数据分析与 R 语言》 Graphical Data Analysis with R
- The Economist
- BBC
- Gapminder
与编程开发相关:
- The tidyverse style guide https://style.tidyverse.org/
- Tidyverse design guide https://design.tidyverse.org/
- Documentation for R's internal C API https://github.com/hadley/r-internals
- Advanced R https://adv-r.hadley.nz/
- R Packages https://r-pkgs.org/
- R Developer’s Guide https://forwards.github.io/rdevguide/
与写书、建站相关:
- bookdown: Authoring Books and Technical Documents with R Markdown https://bookdown.org/yihui/bookdown/
- blogdown: Creating Websites with R Markdown https://bookdown.org/yihui/blogdown/
- R Markdown: The Definitive Guide https://bookdown.org/yihui/rmarkdown/
- Reproducible Research with R and RStudio https://github.com/christophergandrud/Rep-Res-Book
Shiny 相关:
- 《Engineering Production-Grade Shiny Apps》 Colin Fay, Sébastien Rochette, Vincent Guyader 和 Cervan Girard https://engineering-shiny.org/
- 《Mastering Shiny》Hadley Wickham https://mastering-shiny.org/
统计推断:
- 《Computer Age Statistical Inference: Algorithms, Evidence and Data Science》 Bradley Efron 和 Trevor Hastie https://web.stanford.edu/~hastie/CASI/
- 《All Models Are Wrong: Concepts of Statistical Learning》Gaston Sanchez and Ethan Marzban https://allmodelsarewrong.github.io/
- 《Statistical Inference via Data Science: A ModernDive into R and the Tidyverse》 Chester Ismay and Albert Y. Kim https://moderndive.com/
- 《Statistical Learning From A Regression Perspective》 Richard A. Berk
- 《Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis》Frank E Harrell Jr https://hbiostat.org/doc/rms.pdf https://hbiostat.org/rms/
- 《Regression and Other Stories》 Andrew Gelman, Jennifer Hill, and Aki Vehtari https://users.aalto.fi/~ave/ROS.pdf
- 《Gaussian process modeling, design and optimization for the applied sciences》 Robert B. Gramacy 网页版 PDF
- 《Tidy Modeling with R》 Max Kuhn and Julia Silge https://www.tmwr.org/
- 《Introduction to Categorical Data Analysis》Alan Agresti https://mregresion.files.wordpress.com/2012/08/agresti-introduction-to-categorical-data.pdf
- 《Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R》Paul Roback and Julie Legler https://bookdown.org/roback/bookdown-BeyondMLR/
- 《All of Statistics: A Concise Course in Statistical Inference》Larry Wasserman https://www.stat.cmu.edu/~larry/all-of-statistics/
- 《Multivariate Kernel Smoothing and Its Applications》José Chacón and Tarn Duong http://www.mvstat.net/mvksa PDF
- 《Theory of Statistics》 James E. Gentle PDF
- 《The Boosttrap and Edgeworth Expansion》蒙特卡洛、Boostrap、非参数分布 Michael I. Jordan PDF
- 《Handbook of mathematical functions》 数学函数手册大全 http://people.math.sfu.ca/~cbm/aands/frameindex.htm
- 《Graphical models, exponential families, and variational inference》
- Foundations and Trends in Machine Learning. Vol.1
- 图模型 指数族 变分推断 M. J. Wainwright and M. I. Jordan PDF
- 《High-dimensional statistics: A non-asymptotic viewpoint》 Martin J. Wainwright
- 《The Elements of Statistical Learning: Data Mining, Inference, and Prediction》
- 书籍主页 https://web.stanford.edu/~hastie/ElemStatLearn/
- The Elements of Statistical Learning (ESL)的中文翻译、代码实现及其习题解答
- Lijun Wang https://github.com/szcf-weiya/ESL-CN
- 《An Introduction to Statistical Learning with Applications in R》 https://www-bcf.usc.edu/~gareth/ISL/
- 《Statistical Learning with Sparsity: The Lasso and Generalizations》 https://web.stanford.edu/~hastie/StatLearnSparsity/
- 《Statistical Learning from a Regression Perspective》
- 书籍主页 https://www.springer.com/gp/book/9783319440477
- John L. Weatherwax 学习笔记
- 《Convergence of Stochastic Processes》 随机过程的收敛性 PDF
空间统计书籍:
- 《Analyzing US Census Data: Methods, Maps, and Models in R》 Kyle Walker https://walker-data.com/census-r
- 《Spatio-Temporal Statistics with R》 Christopher K. Wikle, Andrew Zammit-Mangion, and Noel Cressie https://spacetimewithr.org/
- 《Geocomputation with R》 Robin Lovelace, Jakub Nowosad, Jannes Muenchow https://geocompr.robinlovelace.net/
- 《Bayesian inference with INLA》Virgilio Gómez-Rubio https://becarioprecario.bitbucket.io/inla-gitbook/
- 《Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA》Elias T. Krainski, Virgilio Gómez-Rubio, Haakon Bakka, Amanda Lenzi, Daniela Castro-Camilo, Daniel Simpson, Finn Lindgren and Håvard Rue https://becarioprecario.bitbucket.io/spde-gitbook/
- 《Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny》 Paula Moraga https://www.paulamoraga.com/book-geospatial/
- 《Spatial Data Science》 Edzer Pebesma and Roger Bivand https://www.r-spatial.org/book
- 《An Introduction to Spatial Data Analysis and Statistics: A Course in R》 Antonio Paez https://paezha.github.io/spatial-analysis-r/
- 《Predictive Soil Mapping with R》 Tomislav Hengl and Robert A. MacMillan https://soilmapper.org/
- 《Applied Spatial Data Analysis with R》Roger S. Bivand, Edzer Pebesma and V. Gómez-Rubio https://asdar-book.org/
- 《Introduction to Environmental Data Science》 Jerry Davis, SFSU Institute for Geographic Information Science https://bookdown.org/igisc/EnvDataSci/
- 《Geospatial Data Science With R: Applications in Environmental Geography》Michael C. Wimberly https://bookdown.org/mcwimberly/gdswr-book/
- 《Spatial sampling with R》Dick Brus https://github.com/DickBrus/SpatialSamplingwithR
- 《Spatial Point Patterns: Methodology and Applications with R》Adrian Baddeley, Ege Rubak and Rolf Turner https://book.spatstat.org/
- 《Bayesian Modeling of Spatio-Temporal Data with R》 Sujit K. Sahu https://www.sujitsahu.com/bookbmstdr/
空间统计材料:
- Introduction to Geospatial Concepts 空间统计导论
- Introduction to spatial analysis in R 空间分析导论
- Analysis of Spatial and Temporal Data 课程列表
- A curated list of resources focused on Machine Learning in Geospatial Data Science.
- A list of useful resources for getting started with spatial data in R
- An Introduction to Spatial Econometrics in R 空间计量经济
- 空间广义线性混合效应模型及其应用
- Data wrangling visualisation and spatial analysis: R Workshop
- GIS 应用与实践 Jianghao Wang https://github.com/Jianghao/ucasgis
空间统计领域学者:
- Håvard Rue
- Andrew O. Finley
- Peter J. Diggle
- Emanuele Giorgi
- Adrian Baddeley
- Andrew Zammit-Mangion
- Noel Cressie
- Alan E. Gelfand
- Benjamin M. Taylor
- Zhan Zhao
- Song Qian
- Alain F. Zuur
更多学者见列表。
与生态学相关:
- Ecological Models and Data in R PDF 书稿 生态模型
- Statistics and Probability Primer (for Computational Biologists) 计算生物的统计和概率基础
- Primer of Ecology using R 生态学入门与 R 语言 Hank Stevens
- Spatial Data Analysis in Ecology and Agriculture using R
- Data Analysis and Visualization in R for Ecologists 生态学数据分析与可视化
- Beginner's guide to spatial, temporal and spatial-temporal ecological data analysis with R-INLA
- 《Environmental and Ecological Statistics with R》 Song S. Qian https://github.com/songsqian/eesR
- 《Bayesian Applications in Environmental and Ecological Studies with R and Stan》 Song S. Qian https://github.com/songsqian/BeesRStan
与流行病学相关:
- Statistical Methods in Spatial Epidemiology Second Edition Andrew B. Lawson
- Bayesian Disease Mapping Hierarchical Modeling in Spatial Epidemiology Second Edition Andrew B. Lawson
- Handbook of Spatial Epidemiology Andrew B. Lawson
- Geostatistical mapping examples in R loaloa 数据集
- Geostatistical data: Malaria in The Gambia Paula Moraga
- Areal data. Lung cancer risk in Pennsylvania
与机器学习相关:
- 《Foundations of Machine Learning》 机器学习基础第二版 PDF
- 《Foundations of Data Science》 数据科学基础 PDF
- 《强化学习中文教程(蘑菇书)》https://github.com/datawhalechina/easy-rl
- Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville
- 动手学深度学习 https://zh.d2l.ai/
- 机器翻译:基础与模型
- Convex Optimization
- 《Numerical Optimization》 Jorge NocedalStephen J. Wright
- 《机器翻译:统计建模与深度学习方法》肖桐 朱靖波 著 https://opensource.niutrans.com/mtbook/
- 《南瓜书》 https://datawhalechina.github.io/pumpkin-book
- 《机器学习》(西瓜书)公式推导解析 https://github.com/datawhalechina/pumpkin-book
- 《神经网络与深度学习》 Neural Network and Deep Learning 邱锡鹏
- 《统计学习方法》李航,R 语言实现 https://bookdown.org/lyuchengrui/statisticallearningmethods/
- 《Reinforcement Learning: An Introduction》(第二版)中文翻译网页版
- 《迁移学习简明手册》 https://github.com/jindongwang/transferlearning-tutorial
- 《Tensorflow 内核和实现机制》 https://github.com/horance-liu/tensorflow-internals
- 《神经网络与深度学习》 Neural Networks and Deep Learning Michael Nielsen
- 《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares》
- 《Data Scientist Handbook》https://bookdown.org/BaktiSiregar/data-science-for-beginners/
- 《Bayesian Data Analysis, 3rd》贝叶斯数据分析第三版 Andrew Gelman, John Carlin, Hal Stern, David Dunson, Aki Vehtari and Donald Rubin https://github.com/avehtari/BDA_course_Aalto PDF
- 《Bayesian Reasoning and Machine Learning》贝叶斯推理与机器学习 David Barber 主页
- 《Foundations of Machine Learning, 2nd》机器学习基石 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar https://cs.nyu.edu/~mohri/mlbook/ PDF
- 《Pattern Recognition and Machine Learning》模式识别与机器学习 Christopher Bishop https://www.microsoft.com/en-us/research/people/cmbishop/ PDF
- 《Machine Learning: A Bayesian and Optimization Perspective》PDF
- 《Probabilistic Machine Learning: An Introduction》 https://github.com/probml/pml-book 提供 PDF 电子版下载
- 《线性规划》https://github.com/Operations-Research-Science/Ebook-Linear_Programming
- 《Machine Learning Systems: Design and Implementation》机器学习系统:设计和实现 https://github.com/openmlsys/openmlsys-zh
- 《Mathematics for Machine Learning》Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. https://mml-book.github.io/ PDF
- 《Machine Learning: a Probabilistic Perspective》 机器学习:概率视角 补充材料 PDF
- 书籍主页 https://www.cs.ubc.ca/~murphyk/MLbook/
- 软件工具 Matlab/Octave
- 《Gaussian Processes for Machine Learning》 书籍主页
- 《Information Theory, Inference, and Learning Algorithms》书籍主页 软件工具 Octave/J
- 《Hands-on Machine Learning with R》 Bradley Boehmke & Brandon Greenwell. https://bradleyboehmke.github.io/HOML/
- 《特征工程与特征选择》 Feature Engineering and Selection: A Practical Approach for Predictive Models. Max Kuhn and Kjell Johnson. http://www.feat.engineering
- 《可解释的机器学习》 Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Christoph Molnar. https://christophm.github.io/interpretable-ml-book/
- 《机器学习与R语言》Machine Learning in R. https://mlr.mlr-org.com
- 《分类与回归:caret 包》 Classification And REgression Training. Max Kuhn. https://topepo.github.io/caret/
- 《Mastering Spark with R》 Javier Luraschi, Kevin Kuo, Edgar Ruiz. https://therinspark.com
以及课程资源:
- CS229: Machine Learning 机器学习课程 http://cs229.stanford.edu/
- Statistical Learning 统计学习课程 Trevor Hastie and Rob Tibshirani https://www.dataschool.io/15-hours-of-expert-machine-learning-videos/
- Data wrangling, exploration, and analysis with R 数据加工、探索和分析 Jenny Bryan https://stat545.com/
- Machine Learning and Computational Statistics
- Machine Learning 卡内基梅隆大学课程
- Deep Learning
- Probabilistic Graphical Models 概率图模型-卡内基梅隆大学
- Learning Deep Learning 课程资料大集合
- Theoretical Machine Learning
- 机器学习算法观
- Introduction to Machine Learning 机器学习导论课程
- 2017-李宏毅深度学习
- 为什么我们需要机器学习 《机器学习中的神经网络》
- In-depth introduction to machine learning in 15 hours of expert videos
- 深入理解 RNNs & LSTM 网络学习资料
- TensorFlow 中文社区
- Deep Learning in Energy Production context (wind, gas and oil)
- Off the convex path
- The Neural Network Zoo
- Time Series Prediction With Deep Learning in Keras - Machine Learning Mastery
- Keras R 迁移学习
- Information Systems Research
- Neural Networks from Scratch, in R
- 李宏毅机器学习笔记
- Center for Machine Learning and Intelligent Systems | University of California, Irvine
统计软件:
-
道家的小无相功
- 高级 R 语言编程 Advanced R
- R 语言编程风格指南 R Style Guide
- 高效 R 语言编程 Efficient R programming
- Google R 编程风格
- R 炼狱
- Rcpp for everyone
-
开发 R 包
- 开发 R 包 R packages https://r-pkgs.org/
- R 扩展 Writing R Extensions
- Git Pro Git 中文第二版
- R 用户愉快地使用 Git/Github Happy Git and GitHub for the useR
- The drake R Package User Manual
-
文本挖掘
- 初识命令行 The Unix Workbench
- 数据科学与命令行 Data Science at the Command Line
- 字符串处理 Handling Strings with R
- 文本挖掘 Text Mining with R: A Tidy Approach
- Linux 内核揭秘
-
模型部署
- Docker 入门 A Docker Tutorial for Beginners
- Docker 从入门到实践 docker practice
- R, Databases, and Docker
更多在线书籍合集 https://bookdown.org ,学习 R 语言的天花板不在编程软件而在统计。
还有各类食谱:
- 《R Cookbook, 2nd》R 语言食谱 James (JD) Long 和 Paul Teetor https://rc2e.com/ 书稿源码
- 《R Graphics Cookbook, 2nd》 R 绘图食谱 Winston Chang https://r-graphics.org/ 书稿源码
- 《R Markdown Cookbook》R Markdown 食谱 Yihui Xie、 Christophe Dervieux 和 Emily Riederer https://bookdown.org/yihui/rmarkdown-cookbook/ 书稿源码
以及中外博客:
- 谢益辉 https://yihui.org/
- 于淼 https://yufree.cn/
- 谭显英 https://shrektan.com/
- 任坤 https://renkun.me/
- Andrew Gelman https://andrewgelman.com/
- Julia Silge https://juliasilge.com/
- David Robinson http://varianceexplained.org/