Mujoco Block Stacking Gym Reinforcement Learning Environments.
(Modified from OpenAI Robotics Gym Environments)
These environments are made for use with DDPG with Curiosity Driven Exploration and Multi-Criteria Hindsight Experience Replay
(You need a Mujoco License. Follow the instructions to set up Mujoco here.)
In the gym_fetch_stack root dir, use
pip install -e .
In your python code, use:
import gym
import gym_fetch_stack
env = gym.make("FetchStack2Stage3-v1")
We use three curriculum stages to train an agent to stack blocks:
- Stage 1: basic manipulation tasks without having to create stacks
- Stage 2: stacking blocks where the environment is initialized at various stages of completion
- Stage 3: stacking blocks where all blocks all initialized away from their target locations
A video example of the different stages can found here.
(FetchStacki has i blocks in the environment to stack)
-
FetchStack2Stage1-v1
-
FetchStack3Stage1-v1
-
FetchStack4Stage1-v1
-
FetchStack2Stage2-v1
-
FetchStack3Stage2-v1
-
FetchStack4Stage2-v1
-
FetchStack2Stage3-v1
-
FetchStack3Stage3-v1
-
FetchStack4Stage3-v1
-
FetchStack2SparseStage1-v1
-
FetchStack3SparseStage1-v1
-
FetchStack4SparseStage1-v1
-
FetchStack2SparseStage2-v1
-
FetchStack3SparseStage2-v1
-
FetchStack4SparseStage2-v1
-
FetchStack2SparseStage3-v1
-
FetchStack3SparseStage3-v1
-
FetchStack4SparseStage3-v1