Skip to content

julio-design/gym-fetch-stack

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Gym Fetch Stack

Mujoco Block Stacking Gym Reinforcement Learning Environments.
(Modified from OpenAI Robotics Gym Environments)

These environments are made for use with DDPG with Curiosity Driven Exploration and Multi-Criteria Hindsight Experience Replay

Setup

(You need a Mujoco License. Follow the instructions to set up Mujoco here.)

In the gym_fetch_stack root dir, use

pip install -e .

In your python code, use:

import gym
import gym_fetch_stack
env = gym.make("FetchStack2Stage3-v1")

Curriculum Stages

We use three curriculum stages to train an agent to stack blocks:

  • Stage 1: basic manipulation tasks without having to create stacks
  • Stage 2: stacking blocks where the environment is initialized at various stages of completion
  • Stage 3: stacking blocks where all blocks all initialized away from their target locations

A video example of the different stages can found here.

Environments Available:

Incremental Rewards (Sparse reward for each correctly placed block):

(FetchStacki has i blocks in the environment to stack)

  • FetchStack2Stage1-v1

  • FetchStack3Stage1-v1

  • FetchStack4Stage1-v1

  • FetchStack2Stage2-v1

  • FetchStack3Stage2-v1

  • FetchStack4Stage2-v1

  • FetchStack2Stage3-v1

  • FetchStack3Stage3-v1

  • FetchStack4Stage3-v1

Binary Rewards (Single Sparse reward for completed stack):

  • FetchStack2SparseStage1-v1

  • FetchStack3SparseStage1-v1

  • FetchStack4SparseStage1-v1

  • FetchStack2SparseStage2-v1

  • FetchStack3SparseStage2-v1

  • FetchStack4SparseStage2-v1

  • FetchStack2SparseStage3-v1

  • FetchStack3SparseStage3-v1

  • FetchStack4SparseStage3-v1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%