Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Ready] F5-TTS Training Recipe for WenetSpeech4TTS #1846

Merged
merged 20 commits into from
Jan 27, 2025
5 changes: 3 additions & 2 deletions egs/ljspeech/TTS/matcha/fbank.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ class MatchaFbankConfig:
win_length: int
f_min: float
f_max: float
device: str = "cuda"


@register_extractor
Expand Down Expand Up @@ -46,7 +47,7 @@ def extract(
f"Mismatched sampling rate: extractor expects {expected_sr}, "
f"got {sampling_rate}"
)
samples = torch.from_numpy(samples)
samples = torch.from_numpy(samples).to(self.device)
assert samples.ndim == 2, samples.shape
assert samples.shape[0] == 1, samples.shape

Expand Down Expand Up @@ -81,7 +82,7 @@ def extract(
mel, (0, 0, 0, num_frames - mel.shape[1]), mode="replicate"
).squeeze(0)

return mel.numpy()
return mel.cpu().numpy()

@property
def frame_shift(self) -> Seconds:
Expand Down
66 changes: 65 additions & 1 deletion egs/wenetspeech4tts/TTS/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,5 +68,69 @@ python3 valle/infer.py --output-dir demos_epoch_${epoch}_avg_${avg}_top_p_${top_
--text-extractor pypinyin_initials_finals --top-p ${top_p}
```

# [F5-TTS](https://arxiv.org/abs/2410.06885)

./f5-tts contains the code for training F5-TTS model.

Generated samples and training logs of wenetspeech basic 7k hours data can be found [here](https://huggingface.co/yuekai/f5-tts-small-wenetspeech4tts-basic/tensorboard).

Preparation:

```
bash prepare.sh --stage 5 --stop_stage 6
```
(Note: To compatiable with F5-TTS official checkpoint, we direclty use `vocab.txt` from [here.](https://github.com/SWivid/F5-TTS/blob/129014c5b43f135b0100d49a0c6804dd4cf673e1/data/Emilia_ZH_EN_pinyin/vocab.txt) To generate your own `vocab.txt`, you may refer to [the script](https://github.com/SWivid/F5-TTS/blob/main/src/f5_tts/train/datasets/prepare_emilia.py).)

The training command is given below:

```
# docker: ghcr.io/swivid/f5-tts:main
# pip install k2==1.24.4.dev20241030+cuda12.4.torch2.4.0 -f https://k2-fsa.github.io/k2/cuda.html
# pip install kaldialign lhotse tensorboard bigvganinference sentencepiece

world_size=8
exp_dir=exp/f5-tts-small
python3 f5-tts/train.py --max-duration 700 --filter-min-duration 0.5 --filter-max-duration 20 \
--num-buckets 6 --dtype "bfloat16" --save-every-n 5000 --valid-interval 10000 \
--base-lr 7.5e-5 --warmup-steps 20000 --num-epochs 60 \
--num-decoder-layers 18 --nhead 12 --decoder-dim 768 \
--exp-dir ${exp_dir} --world-size ${world_size}
```

To inference with Icefall Wenetspeech4TTS trained F5-Small, use:
```
huggingface-cli login
huggingface-cli download --local-dir seed_tts_eval yuekai/seed_tts_eval --repo-type dataset
huggingface-cli download --local-dir ${exp_dir} yuekai/f5-tts-small-wenetspeech4tts-basic
huggingface-cli download nvidia/bigvgan_v2_24khz_100band_256x --local-dir bigvgan_v2_24khz_100band_256x

manifest=./seed_tts_eval/seedtts_testset/zh/meta.lst
model_path=f5-tts-small-wenetspeech4tts-basic/epoch-56-avg-14.pt
# skip
python3 f5-tts/generate_averaged_model.py \
--epoch 56 \
--avg 14 --decoder-dim 768 --nhead 12 --num-decoder-layers 18 \
--exp-dir exp/f5_small


accelerate launch f5-tts/infer.py --nfe 16 --model-path $model_path --manifest-file $manifest --output-dir $output_dir --decoder-dim 768 --nhead 12 --num-decoder-layers 18
bash local/compute_wer.sh $output_dir $manifest
```

To inference with official Emilia trained F5-Base, use:
```
huggingface-cli login
huggingface-cli download --local-dir seed_tts_eval yuekai/seed_tts_eval --repo-type dataset
huggingface-cli download --local-dir F5-TTS SWivid/F5-TTS
huggingface-cli download nvidia/bigvgan_v2_24khz_100band_256x --local-dir bigvgan_v2_24khz_100band_256x

manifest=./seed_tts_eval/seedtts_testset/zh/meta.lst
model_path=./F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt

accelerate launch f5-tts/infer.py --nfe 16 --model-path $model_path --manifest-file $manifest --output-dir $output_dir
bash local/compute_wer.sh $output_dir $manifest
```

# Credits
- [vall-e](https://github.com/lifeiteng/vall-e)
- [VALL-E](https://github.com/lifeiteng/vall-e)
- [F5-TTS](https://github.com/SWivid/F5-TTS)
173 changes: 173 additions & 0 deletions egs/wenetspeech4tts/TTS/f5-tts/generate_averaged_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Yifan Yang)
# Copyright 2024 Yuekai Zhang
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) use the checkpoint exp_dir/epoch-xxx.pt
python3 bin/generate_averaged_model.py \
--epoch 40 \
--avg 5 \
--exp-dir ${exp_dir}

It will generate a file `epoch-28-avg-15.pt` in the given `exp_dir`.
You can later load it by `torch.load("epoch-28-avg-15.pt")`.
"""


import argparse
from pathlib import Path

import k2
import torch
from train import add_model_arguments, get_model

from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
)
from icefall.utils import AttributeDict


def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)

parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)

parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)

parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)

parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="The experiment dir",
)
add_model_arguments(parser)
return parser


@torch.no_grad()
def main():
parser = get_parser()

args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)

params = AttributeDict()
params.update(vars(args))

if params.iter > 0:
params.suffix = f"checkpoint-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"

print("Script started")

device = torch.device("cpu")
print(f"Device: {device}")

print("About to create model")
filename = f"{params.exp_dir}/epoch-{params.epoch}.pt"
checkpoint = torch.load(filename, map_location=device)
args = AttributeDict(checkpoint)
model = get_model(args)

if params.iter > 0:
# TODO FIX ME
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
print(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
filename = params.exp_dir / f"checkpoint-{params.iter}-avg-{params.avg}.pt"
torch.save({"model": model.state_dict()}, filename)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
print(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
filenames = [
f"{params.exp_dir}/epoch-{i}.pt" for i in range(start, params.epoch + 1)
]
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))

filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
checkpoint["model"] = model.state_dict()
torch.save(checkpoint, filename)

num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")

print("Done!")


if __name__ == "__main__":
main()
Loading
Loading