This is an official implementation of the our CVPRW 2020 paper "TherISuRNet - A Computationally Efficient Thermal Image Super-Resolution Network" using the Tensorflow (version 1.12.0). Paper can be downloaded from here
Authors: Vishal Chudasama, Heena Patel, Kalpesh Prajapati, Kishor Upla, Raghavendra Ramachandra, Kiran Raja, Christoph Busch
- Download the PBVS Training dataset from here
-
Train Data bicubic downscaling x4 (LR images)
-
Train Data (HR images)
-
Validation Data bicubic downscaling x4 (LR images)
-
Validation Data (HR images)
Put the downloaded dataset in the train_lr, train_hr, val_lr and val_hr folders like this
...
│
├── train_lr
│ ├── 1.png
│ ├── 2.png
│ ├── ...
├── train_hr
│ ├── 1.png
│ ├── 2.png
│ ├── ...
├── val_lr
│ ├── 1.png
│ ├── 2.png
│ ├── ...
├── val_hr
│ ├── 1.png
│ ├── 2.png
│ ├── ...
├── main.py
├── model.py
...
-
Download the imagenet-vgg-verydeep-19.mat file. (Note - Only if you want to use Contextual loss [3] in training process)
-
Train TherISuRNet model.
python main.py
- After training, inference can be performed.
Download the testing LR and HR images from here (Note: Bicubic Interpolated Images are also attached herewith)
PBVS Validation dataset : 50 number of images [1]
FLIR Validation dataset : 1366 number of images
KAIST Validation dataset : 500 preprocessed images
Put above test images and/or your own test images that you want to evaluate into a test folder
example:
...
│
├── main.py
├── pred.py
├── model
│ ├── checkpoint
│ ├── model.ckpt-100000
│ ├── model.ckpt-100000
│ └── model.ckpt-100000
├── test
│ ├── yourpic1.png
│ ├── favpic.jpg
│ ...
│ └── smallpic.png
...
and run the following command.
python pred.py test
- To calculate the corresponding PSNR and SSIM measures
python PSNR_SSIM.py
The SR results of the TherISuRNet model can be downloaded from here.
- Rafael E. Rivadeneira, Angel D. Sappa, and Boris X. Vintimilla. Thermal image super-resolution: a novel architecture and dataset. In International Conference on Computer Vision Theory and Applications, pages 1–2, 2020.
- Purbaditya Bhattacharya, Jorg Riechen, and Udo Zolzer. Infrared image enhancement in maritime environment with convolutional neural networks. In VISIGRAPP, 2018.
- Mechrez, Roey and Talmi, Itamar and Zelnik-Manor, Lihi, The Contextual Loss for Image Transformation with Non-Aligned Data, arXiv preprint arXiv:1803.02077, 2018.
V. Chudasama et al., "TherISuRNet - A Computationally Efficient Thermal Image Super-Resolution Network," 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 2020, pp. 388-397, doi: 10.1109/CVPRW50498.2020.00051.
Bibtex file:
@INPROCEEDINGS{TherISuRNet,
author={V. {Chudasama} and H. {Patel} and K. {Prajapati} and K. {Upla} and R. {Ramachandra} and K. {Raja} and C. {Busch}},
booktitle={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)},
title={TherISuRNet - A Computationally Efficient Thermal Image Super-Resolution Network},
year={2020},
pages={388-397},
doi={10.1109/CVPRW50498.2020.00051}}
We are thankful to itsuki8914 for their ESRGAN code in tensorflow on which we made this implementation. (https://github.com/itsuki8914/ESRGAN-TensorFlow)